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ABSTRACT. In this article, we describe the TEGUS system for mining geospatial path data
from natural language descriptions. TEGUS uses natural language processing and geospa-
tial databases to recover path coordinates from user descriptions of paths at street level. We
also describe the PURSUIT Corpus — an annotated corpus of geospatial path descriptions in
spoken natural language. PURSUIT includes the spoken path descriptions along with a syn-
chronized GPS track of the path actually taken. Finally, we describe the performance of several
variations of TEGUS (based on graph reasoning, particle filtering, and dialog) on PURSUIT.

RÉSUMÉ. Dans cet article, nous décrivons le système TEGUS destiné à la fouille de données
sur des trajectoires géospatiales, à partir de descriptions en langage naturel. TEGUS utilise
des techniques de Traitement Automatique des Langues et des bases de données géospatiales
pour retrouver les coordonnées de trajectoires à partir des descriptions faites par des utilisa-
teurs de leur chemins au niveau des rues. Nous décrivons également le corpus PURSUIT, un
corpus annoté de descriptions de chemins géospatiaux en langage parlé. PURSUIT inclut les
descriptions de chemins avec la trace GPS du chemin effectivement suivi. Enfin, nous décrivons
les performances de plusieurs variations de TEGUS (avec raisonnement sur des graphes, filtre
de particules, gestion de dialogue) sur le corpus PURSUIT.
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1. Introduction

We are interested in building algorithms that understand natural language (NL) de-
scriptions of spatial locations, orientation, movement and paths that are grounded in
the real world. Our ultimate goal is to be able to extract such information from arbi-
trary text or speech. In this paper, we describe our work on the problem of geospatial
path understanding: extracting a path in latitude and longitude (lat/lon) coordinates
given a natural language description of that path. Path understanding would enable
a number of applications, including automated geotagging of text and speech, robots
that can follow human route instructions, and geolocation without the use of GPS.

Our work is centered around geospatial path understanding at street level — the
level of such entities as streets, intersections, businesses, parks, etc. This is in contrast
to most work in geospatial language understanding, which has been at the level of
larger entities such as cities, states, and countries.

Our approach to this problem is based on using natural language understanding to
extract references to geospatial entities. These linguistic references are used to formu-
late queries to large geospatial databases to search for possible grounding referents.
Both reference extraction and search are noisy processes, which produce uncertain
results. However, we are able to use contextual information (such as timing between
utterances) to improve performance.

The remainder of this paper is structured as follows. First, we detail related work
in this area. We then describe the geospatial databases we use in this work. We then
describe the corpus we use for training and testing. We then detail three different
versions of a path geolocation system and its experimental results. We conclude by
mentioning future directions.

2. Related Work

Although there has been a fair amount of previous work on geospatial reference ex-
traction and resolution (see, inter alia, Leidner et al., 2003; Mani et al., 2008; Mikheev
et al., 1999) most has been at the level of cities, states, and countries. Our work focuses
on street-level references to entities such as streets, intersections, and businesses. The
street level contains a much larger set of possible referents and contains much more
name ambiguity than the city/state/country level. Additionally, there seems to be a lot
more variety in the way geospatial entities are referred to at the street level, including
reference by category. Finally, geospatial databases are much less complete than they
are for information about cities, states and countries, due both to the closed-set nature
of the latter as well as differences in the pace of change (some businesses referred to
in our corpus below have since moved, gone out of business, or changed names).

We first mention related work in the area of geospatial corpora. We then turn our
attention to related work in geospatial language understanding.
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2.1. Geospatial Corpora

Although corpora exist for studying NL path descriptions, we are not aware of any
that are bundled with the corresponding GPS track for the paths. In addition, many
corpora are in the spatial domain, but not the geospatial domain (i.e., they do not
contain references to real-world entities with lat/lon coordinates). For example, in the
Map Task Corpus (Anderson et al., 1991), paths described were drawn on 2-D maps
of a fictitious world with relatively few landmarks and no streets. Even setting aside
the fact that it is a fictitious world, the number of geospatial entities and complexity
of the task is much different in a real-world urban environment.

The MARCO corpus (MacMahon et al., 2006) describes paths through a 3-D vir-
tual world of indoor corridors. The problem of indoor navigation (such as in malls,
airports or other large buildings) is of interest to us, and the techniques described in
this paper could be applicable to it, but the level of publicly available data is currently
very low. The IBL corpus (Bugmann et al., 2004) contains path descriptions of robot
movement through a miniature (fictitious) town model. Neither of these are directly
applicable to geospatial databases since each is in a fictitious environment and, with
the exception of Map Task, movement on each is on a small scale. The smallest ob-
jects in our geospatial database (as we will outline below) are at the scale of buildings
— thus the scale of the path needs to be on the order of hundreds of meters so that
multiple GIS objects might be referenced.

SpatialML (Mani et al., 2008) is an XML-based markup language for annotating
geospatial references in text. It can represent references to geospatial entities as well
as certain spatial relations between them. However, as far as we are aware, there are
no SpatialML corpora that have been created at the street level.

ISO-Space (Pustejovsky et al., 2011) is a successor to SpatialML that also al-
lows the annotation of orientation, movement, and geospatial paths. This seems very
compatible with the goals of our own work. ISO-Space is still under development,
however, and we are not aware of any corpora annotated with it.

2.2. Geospatial Language Understanding

As far as we are aware, very little work has been done in the area of mining geospa-
tial path data from descriptions. The work in Pustejovsky and Moszkowicz (2008)
uses lexical verb mappings to a spatial calculus towards extracting paths from text
descriptions. The work in Zhang et al. (2010) explores webpages containing human-
created route descriptions and extracts the final destination using a number of HTML
and linguistic features, towards being able to automatically interpret the entire route
instructions.

The MUTTS system (Schmill and Oates, 2011) is very similar to our own system
described below. It parses natural language descriptions of paths and uses a parti-
cle filter to geolocate that path. MUTTS extracts templates of spatial relations and
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movement from the parse, along with temporal references, and uses them to update a
particle filter that models possible locations.

The work in Sledge and Keller (2009) uses histograms of force to match a text
route description to building outlines extracted from satellite imagery. It parses a
text description and then maps it onto a very precise set of spatial operators (such as
“perfectly to the left of”) which is used to specify the histograms of force. These then
settle on actual building outlines in the area — linking both the path and the mentioned
landmarks.

3. Geospatial Databases

Before describing our geospatial work, we will go over the data sources and
databases used in the research detailed in the rest of the paper.

Geospatial databases are critical in our approach, as they are used to tie names to
geospatial entities which have a latitude and longitude component. In our work, we
use two geospatial databases: Google Maps and TerraFly.

3.1. Google Maps

Google Maps 1 is the online mapping service provided by Google, which we ac-
cess through a RESTful Web interface. The Google Maps API supports searching for
matches on a string query near a central lat/lon coordinate (and within a bounding
box). Determining matches to the search string is based on a proprietary, unpublished
Google algorithm which appears to match tokens both in the names of geospatial en-
tities as well as tokens in their descriptions.

The contents and provenance of the Google Maps geospatial database are not pub-
licly known. From our experience, the RESTful API only returns point data such as
businesses and other points of interest. It does not allow access to street or intersection
data.

3.2. TerraFly

TerraFly (Rishe et al., 2005) is a geospatial database developed at Florida Inter-
national University, and comprises a number of geospatial data sources. We accessed
TerraFly via the Spatial Keyword Search (SKS) (Felipe et al., 2008) Web interface.
SKS supports boolean, token-based string search on any given field in the database for
matches within a radius of a given lat/lon coordinate.

1. http://maps.google.com.
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In our work, we used three separate TerraFly databases:

Streets and street segments Typically, geospatial data about streets is stored as
raster data in geospatial information systems (GIS). For our purposes, however,
we use a TerraFly database in which street segments are represented as point
data. (A street segment is typically a portion of a street between intersections
or other waypoints.) This allows us to reason with streets as if they were single
points. In the future work section, we describe needs for more sophisticated
geospatial reasoners that would include support for lines and polygons.
TerraFly also includes a street database, which includes a set of street segments
for a given street name. As ontological objects, streets are a bit complicated.
A given street segment may be part of several different street names, as named
streets and route indicators (such as US-90) often overlap. This database is used
to provide grounding references to mentions of streets in text.
The street databases we used were derived from the commercial NAVSTREETS
route dataset from NAVTEQ. 2

Intersections We also used a database of street intersections, compiled from the street
database mentioned above. Each intersection is represented by a name, and
lat/lon, and a list of streets that intersect at it. There are several things to mention
here: first, as some pairs of streets intersect more than once, a lat/lon coordi-
nate is needed to uniquely identify an intersection. Also, the list of intersecting
streets may be greater than two because (a) some intersections are comprised
of more than 2 physical intersecting streets; (b) the same contiguous street may
have different names on either side of an intersection; and (c) the intersecting
street segments may have more than one name (as mentioned above).

Other point data The final TerraFly database we used was a compendium of data for
entities that are not streets or intersections, such as businesses, bridges, parks,
schools, restaurants, hotels, bodies of water, etc. These were aggregated from
several datasets including: the Geographic Names Information System (GNIS),
NAVTEQ Points of Interest (POI), Infot Business Databases, Yellow Pages, and
US Census data. The data was ameliorated and then heuristically deduplicated.
Access to a single point database provided a canonical data source for grounding
references in data (which is described in more detail in the next section).

Additionally, we used a land parcel-based geocoder from TerraFly to convert street
addresses to lat/lon coordinates.

4. PURSUIT Corpus

To aid the development and evaluation of our path geolocation systems (described
below), we developed the PURSUIT Corpus (Blaylock and Allen, 2008; Blaylock,
2011), which consists of 13 audio recordings of spoken path descriptions that were
made in realtime as the path was driven in an urban area. Additionally, the corpus

2. http://www.navteq.com.
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Figure 1. Data collection setup

includes corresponding synchronized GPS tracks for each recording, which represent
the “ground truth” of the path actually traversed.

The corpus has been manually transcribed, segmented, and annotated with geospa-
tial entity references. The synchronized combination of information from the speech
and GPS “modalities” has allowed us in a fairly reliable way to manually identify the
intended real-world geospatial entities referred to by mentions in the speech.

In the following, we describe the data collection method for the corpus and
the various annotations performed on it. In particular, we detail our strategy for
semantic annotation of entities based on a combination of name, address, and
lat/lon coordinates. The PURSUIT Corpus is freely available for download at
http://www.cs.rochester.edu/research/speech/pursuit/.

4.1. Corpus Data Collection

Figure 1 shows an example of the data collection setup for the corpus collection.
Each session consisted of a lead car and a follow car in downtown Pensacola, Florida.
The driver of the lead car was instructed to drive wherever he wanted for an approxi-
mate amount of time (around 15 minutes). The driver of the follow car was instructed
to follow the lead car. One person in the lead car (usually a passenger) and one person
in the follow car (usually the driver) were given close-speaking headset microphones
and instructed to describe, during the ride, where the lead car was going, as if they
were speaking to someone in a remote location who was trying to follow the car on
a map. The speakers were also instructed to try to be verbose, and that they did not
need to restrict themselves to street names — they could use businesses, landmarks,
or whatever was natural. Both speakers’ speech was recorded during the session. In
addition, a GPS receiver was placed in each car and the GPS track was recorded at a
high sampling rate.
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Corpus Avg. per Session Track
Length 3h55m 18m

Utterances 3,155 243
Words 20,228 1,556

Annotated References 1,649 127

Table 1. PURSUIT Corpus statistics

4.1.1. Data

The corpus contains 13 audio recordings of seven paths along with two corre-
sponding GPS tracks for each path, from the two cars. 3 The average session length
was just over 18 minutes, and overall 1,649 geospatial references were annotated. Ta-
ble 1 shows various information about the corpus size.

The corpus is rich with references to geospatial entities. Some sample utterances
from the corpus are given below:

– ... and we’re going under the I-110 overpass I believe and the Civic Center is on
the right side on the corner of Alcaniz and East Gregory Street where we are going to
be taking a left turn...

– ... he’s going to turn left right here by the UWF Small Business Development
Center heading toward Gulf Power...

– ... we’ve stopped at a red light at Tarragona Street okay we’re going now across
Tarragona passing the Music House...

– ... we’re at the intersection of East Gregory and 9th near a restaurant called
Carrabba’s I think and a Shell station just a little south of the railway crossing...

4.2. Annotation

The corpus has been manually annotated with transcription, utterance, and location
reference information. Below we describe the annotation format, tools we developed
for the annotation and visualization of the data, and specific issues that emerged during
the development of the corpus.

4.2.1. Annotation Format

We use the NITE XML Toolkit (NXT) data model (Carletta et al., 2005) for storing
both the corpus and annotations on it. NXT is a general XML data model for multi-
modal and heavily cross-annotated corpora. In the data model, a corpus is represented
as a list of observations, which contain the data for a single session. An observation

3. In one session only one audio recording was made.
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Figure 2. Main view of the TESLA annotator

contains a set of synchronized signals, which are typically audio or video streams as-
sociated with the observation, although NXT is broad enough that a signal may be any
timestamped stream of data (like our GPS tracks). Annotations are represented as a
multi-rooted tree structure, where leaves are segments that are time-aligned with an
underlying signal. This allows disparate annotations to be made on and saved with the
same corpus.

4.2.2. The TESLA Annotation and Visualization Tool

To annotate the PURSUIT Corpus, we built The gEoSpatial Language Annotator
(TESLA) — a tool that supports the visualization and hand-annotation of both text
and speech-based geospatial language corpora (Blaylock et al., 2009). TESLA can
be used to create a gold-standard for training and testing geospatial language under-
standing algorithms by allowing the user to annotate references to geospatial entities
and lat/lon coordinates. An integrated search capability to geospatial databases with
results presented in Google Earth allow the human annotator to easily annotate geospa-
tial references with ground truth. Furthermore, TESLA supports the playback of GPS
tracks of multiple objects for corpora associated with synchronized speaker or object
movement, allowing the annotator to take this positional context into account.

Figure 2 shows a screenshot of the main view in the TESLA annotator, showing
a session of the PURSUIT Corpus. In the top-left corner is a widget with playback
controls for the session. This provides synchronized playback of the speech and GPS
tracks. When the session is playing, audio from a single speaker (lead or follow) is
played back, and the blue car icon in the Google Earth window on the right moves in
synchronized fashion. Although this Google Earth playback is somewhat analogous to
a video of the movement, Google Earth remains usable and the user can move the dis-
play or zoom in and out as desired. If location annotations have previously been made,
these pop up at the given lat/lon as they are mentioned in the audio, which allows for
easy verification (and correction, if necessary) by the annotator. In the center, on the
left-hand side is a display of the audio transcription, which also moves in sync with
the audio and Google Earth visualization. The user creates an annotation by highlight-



Street-Level Geolocation 185

Figure 3. Search results display in TESLA

ing a group of words, and choosing the appropriate type of annotation. The currently
selected annotation appears to the right where the corresponding geospatial entity in-
formation (e.g., name, address, lat/lon) can be entered by hand, or by searching for the
entity in a geospatial database.

In addition to allowing information on annotated geospatial entities to be entered
by hand, TESLA also supports search with geospatial databases. TESLA, by default,
uses the position of the GPS track of the car at the time of the utterance as the center
for search queries, although any point can be chosen.

Search results are shown to the user in Google Earth as illustrated in Figure 3. This
figure shows the result of searching for intersections with the keyword “Romana”. The
annotator can then select one of the search results, which will automatically populate
the geospatial entity information for that annotation. Such visualization is important
in geospatial language annotation, as it helps the annotator to verify that the correct
entity is chosen.

Since there will be ambiguous references in the corpus (such as “the gas station”),
it is important that we include this feature to help the user visually disambiguate the
reference. In addition, it is possible that the result will seem unambiguous (e.g., only
one result is returned), but the seemingly unambiguous result is incorrect (e.g., the
result is all the way across town from the speaker); by displaying the search result(s)
in Google Earth, we avoid accidentally falling into such a situation.

4.2.3. Synchronization

For each session, the resulting two audio and two GPS track files were synchro-
nized by hand to start and end at the same point in time. As the recording on each
device was started separately from the others, this led to special challenges in syn-
chronization. Using TESLA, the human annotator adjusted audio and GPS length and
starting time by hand until the audio descriptions and GPS tracks were in concordance.
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4.2.4. Transcription

Transcription of the audio signal was done manually using the Transcriber tool
(Barras et al., 2000). The resulting transcription included not only words, but also
preliminary utterance breaks that were useful to the transcriber. These were used later
to estimate word timing information, as discussed below.

Transcription rules were that no punctuation was to be transcribed, except in
phrases requiring a hyphen, periods in names with abbreviations, and apostrophes.
Proper nouns were capitalized, but the beginnings of utterances were not. Internet re-
sources such as Google Maps were used to verify canonical spellings of proper nouns
such as business or street names. Numbered street names were spelled out (e.g., “Sev-
enteenth Avenue”). In cases where the correct transcription could not be determined,
the token [unintelligible] was inserted as a word.

The words level in NXT requires not only the list of transcribed words, but also
timing information on the start and end time of each word. This was estimated by
using the rough Transcriber utterance boundaries for the start and end time of each
rough utterance and equally dividing the utterance time into chunks for each word
within it.

As we will discuss below, the timing information in the corpus is quite important
in this domain, as it places a constraint on possible distances moved in the given
time. For example, if a speaker mentions a park in one utterance and then 10 seconds
later mentions an intersection, we can assume that the car cannot have moved 5 miles
during that time.

4.2.5. Utterance Segmentation

Utterance segmentation was done manually using TESLA. Utterance segments of
spoken monologue are admittedly somewhat arbitrary, but annotators were instructed
to use cues such as pauses and grammar to help determine natural utterance breaks.

4.2.6. Geospatial Reference Annotation

References to certain types of locations were segmented and annotated by hand
with information about each referent using the TESLA tool.

The high-level classes annotated were:

– Streets: references to a given street, for example “Garden Street” or “a divided
road”;

– Intersections: references to street intersections, for example “the corner of 9th
and Cervantes” or “the next intersection”;

– Addresses: references to street address, for example “401 East Chase Street” or
even “712” (when referring to the address by just the street number);

– Other Locations: this class is a grab bag for all other location types that we
annotated, consisting of such data as businesses, parks, bridges, bodies of water, etc.
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This classification was chosen because that was the separation of data types in our
geospatial databases (as noted above), and not for deep ontological reasons. We do
believe, however, that the standardization of a geospatial entity ontology is needed.

Note that not all geospatial entity references have been annotated in PURSUIT —
just those types that are accessible in our geospatial databases. Examples of entities
referred to in the corpus that were not annotated are fields, parking lots, sidewalks, rail-
road tracks, neighborhoods, and fire hydrants. These were not annotated only because
we did not have access to data about those entities. However, there is nothing inherent
in our approach to path understanding which would prohibit the use of those classes of
entities, if data were available for them. Indeed, we believe that much more geospatial
data will be made available in the not-too-distant future through the release of private
or government databases, advanced mining techniques (e.g., Knoblock et al., 2010),
and geospatial crowdsourcing.

Although not all classes of entities were annotated, within those classes that were
annotated, all references to entities of interest were annotated, whether or not they
were actually found in the geospatial databases. Additionally, all references to entities
were annotated, including category and pronoun references. Thus “Garden Street”,
“a divided road”, or even “it” were annotated if they referred to a geospatial entity of
interest. Each entity was also annotated with whether an entity reference was named
(i.e., contained at least part of the proper name of the entity, such as “the Music House”
and “the intersection at Cervantes”) or category (description did not include a name,
such as “the street”, “a Mexican restaurant”, and “it”).

Annotators were instructed to bracket the entire referring phrase, not just the head-
word, as is done in SpatialML (Mani et al., 2008). One reason for this is that it allowed
the annotation to reflect embedded references. For example, many references to inter-
sections also mention streets. The phrase “the corner of 9th and Cervantes” contains
references to an intersection and two streets. Although it would be possible to just
annotate the headwords (e.g., corner, 9th, and Cervantes), that annotation loses the
information that, indeed, the intersection is at these two roads.

In total, 1,649 geospatial entity references were annotated in the corpus. The
breakdown by category is shown in Table 2.

4.2.7. Grounding Geospatial References

Although the manual bracketing of references is relatively easy, deciding which
real-world entities they correspond to is not, in general. Additionally, as the set of
geospatial entities at the street-level is not closed, there is a question as to how to
represent the real-world entities as semantic individuals.

4.2.7.1. Semantic Representation

In an ideal world, we would have access to a single knowledge base which con-
tained all possible geospatial entities with unique IDs that we could use to ground
geospatial references. Our reality is that we had two geospatial point databases with



188 TAL. Volume 53 – no 2/2012

Reference Type
Named Category Total

Street 77.2% 22.8% 48.5%
Intersection 45.5% 54.5% 6.8%

Address 100.0% 0.0% 0.8%
Other Loc 67.7% 32.3% 43.9%

Total 71.1% 28.9% 100%

Table 2. Breakdown of geospatial entity reference annotations in the PURSUIT Cor-
pus

varying coverage, and, in the case of Google, with no direct access to the underlying
dataset. In fact, out of 724 other_loc references, 25.7% were in both databases, 16.7%
were only in TerraFly, 40.1% were only in the Google Maps database, and 17.5% were
in neither.

Latitude/longitude coordinates alone are also not a viable way to uniquely identify
a geospatial entity. First, lat/lon coordinates, represented as decimals, have arbitrary
precision. One dataset may represent lat/lons to the thousandths place, whereas an-
other to the hundred-thousandths, making it impossible to know if two lat/lon coordi-
nates refer to the same entity (remember, our goal is to ground entities, not locations).
Second, although represented as point data, most geospatial entity data is actually 2-
dimensional — a business may refer to the lot it is on, instead of an arbitrary point
on that property. Third, many databases are geolocated automatically based on street
address (where available). In our experience, many times the given lat/lon can be
up to 200 meters from the actual location. It can be worse in rural areas. Different
datasets may have different geolocations, and there is no trivial way to determine if
two lat/lon coordinates refer to the same entity. Lastly, consider the case where several
businesses reside at a single address, such as in a shopping mall. A dataset may have
several entities for a single lat/lon.

Using the entity name as a unique ID is also problematic, as an entity may have
several aliases or may be referred to in different ways — for example, IBM, I.B.M.,
IBM Corp., International Business Machines, etc.

Although we do not have a perfect solution, we outline the approximation we have
taken for the different types of entities.

Other Locs Our catch-all other_loc class contains entities such as businesses, parks,
bodies of water, etc. Each is annotated minimally with a canonical name (from
the database, if available, or chosen by the annotator based on internet searches)
and a lat/lon (from the database, or manually chosen by the annotator on Google
Earth). For entities which have an address, this is added as well.
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Streets We annotated each street reference to the nearest street segment terminus to
the user’s location, with the given name of the street referred to.

Intersections Intersections are represented as in the TerraFly database, as described
above.

Addresses Addresses are represented by their full street address.

4.2.7.2. Grounding

Entities were annotated using the TESLA tool, including the geospatial search
capability described above. In cases where the entity was not found in a databases,
annotators had good local knowledge of the area, and with this, in many cases were
able to identify the intended referent. If that was not enough, annotators would some-
times use Google Street view to look at images at the location. In a small number of
cases, however, an annotator had to physically travel to the given location in order to
understand and get information about entities referred to in the corpus.

4.2.7.3. Source Database Information

As noted above, several sources were used to search for geospatial entity infor-
mation for annotation. The data sources are also noted in the annotation on each
reference. The two main data sources used are TerraFly and Google Maps (which we
will describe in more detail below). Entities which were not available in either data
source are marked correspondingly. Overall, 92.2% of geospatial entity references
were in either or both of the geospatial databases used.

5. Post Hoc Path Geolocation

We now turn to the task of path geolocation and how we approached it in our path
understanding system: TEGUS (ThE Geospatial language Understanding System). In
this section, we describe a version of TEGUS that performs post hoc path geolocation,
i.e., geolocation given the entire description of the path. In the next section, we relax
that constraint and describe a version of TEGUS which performs online path geolo-
cation — making a location prediction after each user utterance. In the subsequent
section, we describe a version of TEGUS which transforms this into a dialog system
in which the user and system collaborate to more quickly determine the user’s current
location.

5.1. System Description

Input to the system is the natural language text description of a path. The descrip-
tion is parsed to a Logical Form (LF), from which references to geospatial entities
are extracted. These references are used to generate queries to the two geospatial
databases, producing a list of possible entity matches. The list of references and pos-
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sible matches are then used in a path finding algorithm which uses temporal (i.e.,
utterance timing) and geospatial constraints to predict the most likely path.

Note that, in the current versions of the system, the path that is recognized is not
based on traversal of a street network. Rather, the assumption is made that geospatial
entities being mentioned will be in the close vicinity of the current position of the user.
The “path” predicted by the system is actually an ordered list of lat/lon coordinates.

It is also important to note that, although GPS track information was gathered as
part of the corpus, it is not used as input to the path understanding system. The only
input to TEGUS is the transcribed text description of the path in natural language. The
GPS track information is used as ground truth for evaluation, as explained below.

We now describe each of the system’s subcomponents.

5.1.1. Language Processing

Language processing is done by the TRIPS Parser system (Allen et al., 2008),
which is the language understanding component of the TRIPS dialog system (Jung
et al., 2008). TRIPS performs deep syntactic/semantic analysis on the text using a
hybrid symbolic-statistical model. The result of analysis is an underspecified Logi-
cal Form (LF) (Manshadi et al., 2008) which is imported into OWL as an individual
(Blaylock et al., 2011). Several external components are used to guide the symbolic
parser, which helps ensure broad coverage. These include a statistical shallow parser,
several large lexical resources including WordNet, and the Stanford Named Entity
Recognizer (NER) (Finkel et al., 2005). During processing, outputs from these com-
ponents are used as suggestions to the TRIPS parser. However, the parser takes a larger
context into account and it is free to heed or ignore these suggestions. A detailed de-
scription of the TRIPS Parser system is outside the scope of this paper. However,
we mention the Stanford NER especially, as it is used to customize the parser in our
experiments described below.

5.1.2. Location Reference Extraction

LFs for the utterances are then passed to the Entity Extractor. This component uses
hand-built, semantic graph matching rules for SQWRL (O’Connor and Das, 2009) to
find the subgraphs of the LF that correspond to location references. For each utter-
ance, the set of location reference LF subgraphs are passed to the geospatial search
component.

5.1.3. Geospatial Search

TEGUS currently accesses only the TerraFly and Google Maps databases, al-
though the architecture allows any number of databases that may be available. As
noted above, both databases support queries for keywords and a lat/lon for the center
of the search. The system currently makes the simplifying assumption that we know
a bounding circle (of 3 miles) where the user is located (which is meant to roughly
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correspond to knowing a general location within a city). Below we discuss plans to
relax that assumption.

The Search Controller converts each extracted location reference into one or more
keyword searches to the geospatial databases above. Except for cases where the LF
clearly marks the high-level class of the entity (e.g., such as knowing that the referent
is a street), queries are sent to all of the databases. Search results for each query are
aggregated and deduplicated based on name and lat/lon coordinates.

5.1.4. Path Finding

For each extracted location reference, the Search Controller returns a (possibly
empty) list of search results, which represent the potential geospatial referents for
the reference. In the post hoc version of TEGUS, we process all utterances from the
path description to generate a list of location references together with the list of their
possible referents. The Path Finder component uses global context to choose the best
referent for each location reference. This is done by constructing a directed graph of
all possible referents for all location references in the session and finding the optimal
path between the start and end points. Although we formulate the Path Finder as a
graph search algorithm, it is important to note that geometric distance is not the only
factor in determining edge weights in our graph. We are not literally trying to find
the shortest path (in the physical sense), but rather the best fit for the given linguistic
description.

The search graph is constructed with each possible referent as a node, and edges
connecting all nodes from one location reference to the next. This simple graph forms
a trellis, and the optimal path through the trellis visits exactly one node for each lo-
cation reference, which we can then use to predict the referent for that reference.
Unfortunately, a trellis alone will not work for this problem. The assumption that
each layer contains the correct referent is too rigid, as it is possible that none of the
entities in the list is the correct answer for the location reference. This can (and does)
happen because of problems at any stage of processing. For example, a non-location
reference may be incorrectly extracted, or the geospatial databases may not contain
the actual referent. Whatever the reason, we need to be able to handle the case where
no node is the correct answer for a given location reference.

To do this, we add additional edges from a node to all nodes up to N references
ahead of it. This allows the optimal path algorithm to skip a location reference (thus
not making a prediction about that node). Although this multiplies the number of
edges in the graph, the constant “skip” factor (N ) keeps this number manageable.
Optimal paths through the graphs produced in our experiments were found quickly.
The experimental results reported here were attained by allowing the algorithm to
skip up to 10 location references (i.e., N = 10).

Next in the graph construction process, TEGUS uses temporal and geometric
knowledge to delete any edges that are considered impossible transitions. Because
the corpus is based on speech, we are able to preserve the timing information of utter-
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ances. Specifically, we know approximately how much time has passed between two
location references. Using this information, together with knowledge of limitations
on the mode of transportation (a car), TEGUS can determine whether the (physical)
distance between two possible referents was possible given a maximum assumed car
speed (100 km/h). Remaining edges are weighted by the distance between the two
entities plus a penalty for each location reference “skipped” by the edge.

The remaining edges are assigned a weight based on physical distance as well
as name similarity. The latter is currently a simple average of similar word tokens
between the two entities. As discussed below, we believe more sophisticated similarity
measures will help increase accuracy.

Also, for these experiments, we made the simplifying assumption that we knew
the start and end locations for the path. Thus, a single node with the correct location
was added at the start and the end of the trellis. In experiments with other versions of
our system, we remove this simplifying assumption.

Once the graph is constructed, we use Dijkstra’s algorithm (Dijkstra, 1959) to com-
pute the least cost path through the graph. This path represents the system’s prediction
of the actual path taken.

5.2. Experimental Results

We performed an evaluation of the post hoc TEGUS system on the PURSUIT
Corpus. Specifically, we performed a 7-fold cross validation (one for each session)
of TEGUS on the PURSUIT Corpus. The Stanford NER was trained on all named
location references from the remaining 6 sessions and used with the TRIPS parser.
Each path description was separately input to the TEGUS system, which produced a
single path prediction.

We evaluate the results of this experiment in two ways, using the GPS track and
hand-annotations of the corpus. The first evaluation is on the path prediction itself.
As noted above, the current version of the system does path prediction by location
references as opposed to street segments. Except for street mentions, very rarely will
the speaker have been exactly on the lat/lon coordinates of the geospatial entities he
mentions. However, our assumption, as explained above, is that these entities will
often be very close to the speaker. We check correctness of the predicted path by
looking at the distance between the predicted location and the position of the car (as
given by the GPS track) at the time the location is referred to in speech. If the distance
is within 300 m, it is counted as a correct prediction. 4

As the algorithm counts on location mentions to predict current location, it is un-
reasonable to expect that the system will make predictions at the same rate the GPS

4. The allowable distance from the path will ultimately depend on the end application using
geospatial path understanding.
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Named Category Total
Prec. Recall Prec. Recall Prec. Recall

Street 96.8% 73.9% 100.0% 1.1% 96.8% 57.3%
Intersection 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Address 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Other Loc 86.2% 60.0% 43.5% 11.5% 79.7% 44.3%

Total 92.4% 64.0% 45.3% 6.1% 88.9% 47.2%

Table 3. Breakdown of reference resolution results by entity and reference type

location was sensed (e.g., 1 Hz). Instead, we take as the maximum number of expected
predictions the number of location references (from the hand-annotated corpus). This
is used in computing recall for the path prediction.

Besides the final path result, we also evaluate the system’s performance on cor-
rectly resolving each location reference to the corresponding referent as annotated in
the corpus (the actual geospatial entity). Here, we also measure precision and re-
call. Also, similar to what we do with the path, we allow some distance between the
predicted and actual points. As we are working with different databases, because of
the inaccuracies of geocoding or other errors, entries for the same entity in differ-
ent databases can have different names and/or lat/lon coordinates. Because of this,
we count as correct all system’s predictions that are within 200 m of the lat/lon co-
ordinates as annotated in the PURSUIT Corpus. This number was chosen based on
anecdotal evidence from examples where the same address was geocoded to differ-
ent lat/lon coordinates in Google Maps and TerraFly. Also, street references were
considered correct based on the named street mentioned, and not the exact street seg-
ment as annotated in the corpus, since, for reference resolution, the whole street was
referenced by the speaker, not a particular segment.

Results on the test corpus for path prediction were 92.6% precision and 49.2%
recall (64.3% f-score). Results on geospatial entity reference resolution were 88.9%
precision and 47.2% recall (61.7% f-score).

Reference resolution statistics broken down by reference and entity type are shown
in Table 3.

5.3. Discussion

All in all, the results seem very good, especially the precision in path prediction.
Recall numbers are only in the 40’s, although it is important to remember what this
means in this domain. To get 100% recall would mean to correctly predict the location
after the user’s first utterance. Given the ambiguities involved in geospatial language,
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that kind of performance is probably unrealistic. It is also important to note that, for
most extraction tasks, we assume that precision will be far more important than recall.

Many of the missed cases in recall are actually quite difficult, if not impossible,
to do based on this graph-based model of location-based path prediction. References
such as “the road” or “this intersection” hold very little informational content, making
search for them nearly impossible (without returning all the street segments or inter-
sections in the search radius). We believe that moving to a street-based modeling will
lead to much higher rates of recall.

In reference resolution, resolution for street references was quite high with 96.8%
precision, and other loc prediction has 88.9% precision. TEGUS does not yet try to
extract intersection or address references (which is why no predictions were made),
but we include them for completeness.

The performance on named versus category references is quite stark. Overall,
for named references (references with at least one proper name in them), TEGUS
achieved 92.4% precision and 64.0% recall. For category references (references with
no proper names), however, the system only achieved 45.3% precision and 6.1% re-
call. This is attributable to several factors, including the “the road” type references
with little informational content mentioned above, and the fact that category refer-
ences (such as “a bank”) usually match a much wider range of entities than a named
reference (such as “Wells Fargo”) does.

It is also interesting to note that the precision result for path prediction is almost
5% higher than precision on reference resolution. What seems to be happening here
is that, in some cases, the algorithm is predicting an entity which is not the intended
referent, but nonetheless is still close to the car position. This is partly due to the
fact that entities may have similar names in similar areas (e.g., Alcaniz Street and
Atelier Alcaniz [which is a shop on Alcaniz Street]). Category-based descriptions
are sometimes also clumped together (e.g., many banks or restaurants in the same
vicinity). Additionally, Google Maps often returns results which not only match the
keywords from the search, but also entities that are in the general vicinity from those
entities. In these cases, the path finding algorithm is faced with a choice among several
entities that are very close to each other. We believe that weighting edges based on a
better name similarity metric will help here.

As mentioned above, there are several simplifying assumptions that undoubtedly
help the results. The assumption that we know the start and end locations of the path
is unrealistic in most cases and has been removed in experiments with other versions
of the system.

6. Online Path Geolocation

In this section, we describe a version of TEGUS which makes location predictions
after each user utterance. This system uses the same components as the post hoc
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version of TEGUS, except for the graph-based Path Finder. We describe here the
system differences and then experiments based on this system.

6.1. System Description

For online prediction, we use particle filtering, an efficient method often used in
mobile robot localization. Our particle filtering approach models a vehicle’s position
as a state (i.e., a particle) and its action model that computes next states is based on
vehicle’s movement with constraints on possible next states confined on roads (and
assuming maximum speeds). Sensors are inputs from user’s natural language descrip-
tion that contains geospatial references (e.g., “I’m passing Romana street”, “I see Bank
of America loan offices”, etc.). In our system, sensing is passive in that the system
gets sensor inputs only when a user provides inputs: therefore, particle computation
is performed at irregular intervals, only triggered with user inputs.

6.1.1. Particle Filter

Below is a brief description of particle filtering steps used in TEGUS:

Setting: Number of particles = M ; Weight sum = 1.0

Initialization: Given the first utterance, make particles at the locations (lat/lon coor-
dinates) of search results for all geospatial references extracted from the utter-
ance. If more particles are needed, create additional particles at random loca-
tions within a certain close distance from (randomly chosen) geospatial refer-
ents and, in the opposite case, randomly remove particles.

– When more particles were needed: A large portion (e.g., 90%) of the
weight sum is evenly distributed to particles that exactly correspond to geospa-
tial referents and the remaining weight sum is evenly distributed to additional
created particles.

– Otherwise (no extra particles): Evenly distribute the weight sum to all
particles.

Recursion: Perform the following steps M times (to get M particles) for each fol-
lowing utterance:

– Sample a particle P based on particle weights (that indicate relative con-
fidence about particle positions);

– Generate a next particle new_P by:

- (i) computing a radius (R) estimated by assumed vehicle speed and the
elapsed time from the last particle computation (i.e., the time when the last user
utterance was given);

- (ii) selecting a new location (loc) randomly within the radius R from
the selected particle P (currently, we do not extract directional information, if
any, from utterances that can guide which direction to focus on). Note that it is
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also possible to select a new particle location based on a probability distribution
(e.g., Gaussian) that models vehicle movement;

- (iii) selecting new_P ’s final location by computing the closest lat/lon
coordinates corresponding to a point on the road network (within the radius R)
from the location loc computed in (ii).
After getting M particles, we then compute new weights for them. Weights are
inversely proportional to the distance between particles and the potential refer-
ents (search results) for the geospatial references mentioned in user utterances.
In other words, the closer a particle to a search results, the higher its weight.
The weights are then normalized before being assigned to the new particles.

6.1.2. Path Prediction

There are several ways to convert the particle filter model into an actual location
prediction. The most straightforward approach is to predict the location of the particle
with the highest weight. We found better performance when using a centroid-based
prediction method. In this approach, we sort the particles by weight (in descending
order) and then take the top Nth percentile of the list by weight. The predicted location
is then the weighted centroid of that group of particles. There are, however, cases
(typically at the start of a session) in which the particles are spread out, which can
result in the centroid being quite far from any given particle. To prevent this situation,
if the predicted location is more than a certain distance from the highest-weighted
particle (1 km in our evaluation), we default to predicting the location of the highest-
weighted particle instead.

6.2. Experimental Results

We used two sessions (three audio tracks) for development: tuning parameters,
deciding on the path prediction model, etc. The other five sessions (ten audio tracks)
were used for testing.

The text-based system was run separately on each of the ten test tracks. The sys-
tem was independent of any other training data, except the named entity recognizer
(NER), which was trained on the set of all sessions except the current route (as was
done in the evaluation of the post hoc system). The system had the option of making
a location prediction (lat/lon) after each utterance from the test set. However, since
the data was gathered with an open microphone, it includes a number of utterances
that are extraneous to making location predictions (such as comments on the aesthetic
value of buildings). These were also fed to the system, but as they contain little or
no pertinent information value, these were not treated as prediction opportunities in
the evaluation. The prediction was based on the centroid of the top 50 percentile of
the highest weighted particles in a simple particle filter (using 100 particles). Perfor-
mance was averaged over ten runs of the system. Location predictions were counted
as correct if they were within 300 m of the actual position.
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We evaluated the system’s performance using micro-averaged precision and recall.
The system itself made or did not make predictions based upon its model and whether
it had extracted any location reference from the utterance. Thus, there were utter-
ances for which it made no new update to its model and thus offered no new location
prediction. These were counted as false negatives.

Additionally, we measured the distance between the predictions and the actual
location, to give a sense of how close to the original location the system is predicting.

On the test data, the text-based system got 80.7% precision and 62.1% recall
(70.2% f-score). For correct predictions, the average distance to the actual location
was 96 m. Overall, the average distance between the system’s predictions and the true
path was 230 m.

6.3. Discussion

Precision for the online version of TEGUS (80.7%) was much lower than that for
the post hoc version (92.6%), but recall was significantly higher (62.1% versus 49.2%)
as was the f-score (70.2% versus 64.3%). Of note, the online prediction has the added
benefit of potentially being useful to many more applications (as we will discuss in
more detail below).

We believe this performance can be greatly improved by both improving language
understanding and modeling the path prediction based on street network movement.
Right now, the system is only extracting references to geospatial entities and searching
for them in a geospatial database. This is actually ignoring much of the rich language
that could contribute to prediction location, such as references to spatial relations,
orientation, and movement events. We discuss this issue more below in future work.

On average, our correct predictions are 96 m from the actual location. Although
good, we believe this can also be improved by implementing some of the ideas dis-
cussed above. Note also that we put very little effort into the particle filter used to
model the evidence, as this was not the research focus of this project. We believe that
a more sophisticated localization mechanism will also improve performance.

7. Dialog-Based Geolocation

In this section, we describe the final version of TEGUS, which uses dialog to
augment the online path prediction system described in the previous section. The
previously described versions of TEGUS made path location predictions based only
on the input utterances. In the dialog-based system, however, the system can ask
clarification questions to better help narrow down location predictions.
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7.1. System Description

This version of TEGUS augments the online version with the following features
(which we will describe in turn). First is the addition of speech recognition to allow
speech input. 5 Second is the addition of a simple dialog manager that generates ques-
tions for the user. Last is the incorporation of questions and answers into the particle
filter for path prediction.

7.1.1. Speech Recognition

For a dialog system, one of the important issues is the development of language
models (LMs) for the speech recognition component. Typically, LMs are trained using
existing data (corpora) for the task at hand; when no such corpora exist, they need to
be collected first — a lengthy and costly endeavor. In the past we found that for dialog
systems it is the norm rather than the exception that adequate corpora cannot be found.
We thus developed techniques for the fast development of broad-vocabulary LMs from
very small corpora of in-domain utterances, by generalizing these corpora into finite
state grammars which are then used to generate much larger artificial corpora (Galescu
et al., 1998). In this project, we expanded our previous methodology by adding a
couple of innovative adaptive features. First, in addition to a small set of dialog-style
set of utterances for developing the finite state grammar, we use the development set
of PURSUIT Corpus as a source of language data; its descriptive style is not a perfect
match for the interactive style used in dialog, but other than that it’s a fairly good
approximation. However, rather than using it just for training word-based LMs (it
is a small amount of data, after all), we map the annotated location categories into
non-terminals in the finite state grammar, thereby allowing us to achieve a sort of
cross fertilization between the finite state grammar approach and the corpus-based
approach. Second, we generate class LMs, where certain classes of words/phrases
(e.g., place names and street names) are not expanded into words. At run-time we
query for named entities in the area of interest and use those for class expansion to
transform the class LM into a word LM suitable for speech recognition. This process
will result in the computation of a new LM after each location prediction. We expect
these adaptive LMs are significantly higher quality than static LMs that include all
named entities in the larger area of interest, although empirically testing this remains
an effort for future work.

7.1.2. Dialog Management and Question Generation

In this version of TEGUS, we included a fairly rudimentary dialog manager for
question generation and processing. After each user utterance describing a location,
the system internally makes an initial location prediction using the same particle filter
algorithm as the online version of the system described above. Based on this predic-

5. Although the previous versions of the system could theoretically take speech input, we only
included it for the dialog system to help in demonstrations. We mention it here, though, as it is
an area that deserves more attention in terms of processing geospatial language.
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tion, the system has the option to generate a question about the user’s location; if the
user answers this question, the system uses the additional information in the answer to
make a new prediction, which becomes the final hypothesis for the location referenced
in the initial user utterance.

In the system, we use a very basic algorithm to generate questions (generating
and using more sophisticated questions is an area of future work). The system takes
the lat/lon coordinates of the top prediction and queries the geospatial database for
entities nearby that point. If an entity is close by, and it hasn’t been mentioned before,
the system then asks the user if he is “near” the given entity. This sets up a dialog
context in which the system waits for a “yes” or “no” answer. The user can also
ignore the question and give another, unrelated description utterance, in which case
the system proceeds as if no clarification question had been asked (the initial location
hypothesis becoming final). The dialog manager also keeps track of each geospatial
entity that has been mentioned in the dialog (either by the system or the user) and does
not generate questions about these.

7.1.3. Path Prediction

If the user’s answer to the system’s question is “yes”, the system treats this as if
the user had uttered “I am near X” (where X is the geospatial entity in the clarification
question). This information is then used to update the particle filter and make a new
prediction as described in the previous section.

The case where the user’s answer is “no” is a bit more complicated. First, it is
important to consider what a “no” answer implies. It could mean the user is not
near the entity, or it could also mean the user is not within visual view of the entity
and yet still near it. Or, it could mean that the user simply did not notice the entity
nearby. Because of this uncertainty, we decided not to treat a negative reply as absolute
evidence (and, for example, make the probability of that area 0).

Instead, with negative responses, we adjust particle weights as follows (the loca-
tions of the particles do not change):

– (i) Select particles that are located within a certain distance from query results
from extracted geospatial references in the preceding utterance;

– (ii) Decrease weights of those particles by some percentage;
– (iii) With the amount of weights decreased at (ii), distribute it to other particles

that are not selected at (i), if any.

The updated model (with adjusted weights) is then used to make a new location pre-
diction, as described above.
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7.2. Experimental Results

To evaluate the extent to which dialog helps improve the system’s performance,
we devised a method to test the dialog system on the same data set, and under the
same testing protocol as in the previous section. Specifically, we created a component
to simulate user responses to the questions. This simulated user, when asked by the
system if some geospatial entity was nearby, checked the actual location of car (from
the PURSUIT annotations) at that time, and, if it was within 200 m, it would answer
“yes”; otherwise, it would answer “no”. In this case, the simulated user is always
correct in its “no” answers, but we still process them cautiously, as outlined above.

Locations are predicted as before, for each utterance of the test set, but this time
the system’s final prediction is made after the system asks its question and evaluates
the answer. Performance was, again, averaged over ten system runs.

On this test, the dialog system obtained 86.5% precision and 63.5% recall, for a
combined f-score of 73.3%. For correct predictions, the average distance to the actual
location was 94 m. Overall, the average distance between the system’s predictions and
the true path was 176 m.

7.3. Discussion

As expected, moving to a question-and-answer dialog did improve system perfor-
mance. Precision benefited most, with a boost of over 7% (86.5%, compared to 80.7%
for the non-interactive system). Recall also improved by a more modest 2.5% (63.5%,
compared to 62.1%). As a result, the f-score increased by almost 4.5%. It appears
that the additional questions did help the system “nudge” its predictions closer to the
ground truth. This is revealed most dramatically by the over 23% reduction in the
average distance between the system’s predictions and the ground truth (from 230 m
to 176 m). Correct predictions only got an insignificant improvement (from 96 m to
94 m), though, of course, the set of correct predictions is larger for the dialog system
than for the non-interactive system.

We further wanted to know whether our treatment of negative answers to the sys-
tem’s questions was, indeed, helpful. We therefore ran another ten system runs on the
same data, but this time we had the system ignore all negative answers to its questions,
and act only on positive answers. This case effectively tests also the case where the
user would answer “I don’t know” instead of “no”, which is, in fact, quite plausible
for the situation where the user doesn’t see the entity in the system’s question. For
this test, we obtained 83.6% precision, 62.8% recall (f-score was 71.7%); the average
distance to the correct locations was 271 m for all predictions and 104 m for just the
correct ones. Thus, it appears that negative answers contribute about the same as pos-
itive answers towards the performance improvements obtained by the dialog system.
However, the negative answers seem to have a much larger effect on how close the
path predicted by the system stays to the ground truth.
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We note here that, while the simulated user technique allowed us to directly com-
pare the results of the interactive system with its non-interactive counterpart, it has one
limitation, in that it will always answer “yes” when it knows the entity in the system’s
question is close to the true location. In reality, for a real user-in-the-street scenario,
it is likely that the user may not see some landmark even if it is nearby, because of
obstructions, improper signage, and so on. As mentioned above, a user may ignore the
system’s question (or just answer “I don’t know”), but we don’t have a model of how
often this might happen in reality. Thus, while the results reported above unequivo-
cally show that system-generated questions are beneficial, they probably overstate to
some extent their usefulness.

On the other hand, there are obvious areas where the dialog system could do a
better job and thus further improve its performance. The current system uses a very
basic strategy for generating clarification questions — looking up the nearest entity
to the prediction and asking if the user is “near” it. There are two areas in which this
can be vastly improved. First, the system needs the ability to generate a location to
ask about using some sort of measure of expected utility of the answer. Second, the
system can be expanded to use the more complicated language mechanisms to ask a
more targeted question (such as “Are you across the street from X?”). Such questions
can focus the range of the question as well as potentially direct the user’s attention
to the given place, to increase the chances of the user correctly knowing whether the
entity in question is actually there.

8. Conclusion and Future Work

In this paper, we have described our work on predicting geospatial path locations at
a street level from natural language descriptions. We described the PURSUIT Corpus,
which contains path descriptions coupled with GPS tracks for routes driven in an urban
area. Geospatial entity references in the corpus have been annotated with referents
from geospatial databases and the corpus is freely available for other researchers.

We then described three versions of a path geolocation system we built (post hoc,
online, and dialog-based), and their evaluations using the PURSUIT Corpus. We
showed that system questions can help improve performance on the geolocation task.

There are many possible future directions to this work. First off, we believe that
one of the reasons for the good performance of our system is that, in addition to
the language descriptions, it uses temporal information about elapsed time between
utterances, which allows it to discard impossible transitions based on that time and an
assumed speed. However, timing information is not always available, especially for
processing textual information. We would like to explore ways to generalize this away
from time, as well as away from paths, to be able to geolocate any and all geospatial
references within text.

The current system, in all the three modes, is based only on the processing of
geospatial entities, and does not yet utilize the rich descriptive power of natural lan-
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guage. Although it performs quite well, this is based on the simplifying assumption
that each place mentioned by the user is “near” to the user. Using better language
understanding (and constraint modeling based on it) should result in much more ac-
curate predictive power for the system. There are several areas of geospatial language
understanding that need to be taken into account:

Relations In addition to a generic “near” relation, natural languages encode a num-
ber of spatial relations, and many of these appear in the PURSUIT Corpus.
Such relations are often (but not always) expressed as prepositions in English
and encode specific spatial relationships between entities. These include both
quantitative (e.g., “100 meters away”) and qualitative relations. Of the latter, ex-
amples include containment (e.g., “inside”, “outside”), position (e.g., “in front
of”, “behind”, “to the left of”, “to the right of”), and many others. Each of
these can be modeled as a constraint on the relative position of the two entities.
Spatial relations have been studied extensively in Linguistics (e.g., Logan and
Sadler, 1996; Levit and Roy, 2007). The research challenge here is extracting
the relations automatically, and modeling them as sensor output (most likely a
probabilistic distribution over a 2-D shape on the map);

Orientation Language also includes descriptions of spatial orientation, and the PUR-
SUIT Corpus includes instances that describe the orientation of the user’s move-
ment, as well as the orientation of spatial entities (such as streets or buildings).
Examples include both extrinsic orientation (e.g., “north”, “south”) and intrin-
sic orientation (e.g., “turning left”). These also can be modeled as constraints
on position and movement;

Movement Events In cases where movement is present, the bulk of the language we
have encountered describes movement events, such as “turning <direction>”,
“stopping”, “passing <geospatial entity>”. Research is needed to catalog the set
of these and build information extraction rules to extract them from language.
We also need tools to model movement on a street (or footpath, etc.) network
and reason about constraints over it. Note that, with events, not only the event
type, but also its parameters need to be extracted;

Spatial Regions Finally, we mention here that the current system does not currently
handle spatial regions (such as neighborhoods, cities, states, etc.) Instead, all
entities are treated as points. On a sub-city scale, we need to be able to extract
mentions of regions and also reason about location based on these (such as being
“in a neighborhood”). Additionally, the current system makes the assumption
that an initial bounding box (roughly corresponding to a city) containing the
user’s location is known. A simple addition to the system would be to allow
utterances such as “I’m in Pensacola” to set such bounding boxes and narrow
down the scope of search.
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