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ABSTRACT. Deep machine reading models have recently progressed remarkably with the help
of differentiable reasoning models. In this context, deep end-to-end trainable networks en-
hanced with memory and attention have demonstrated promising performance on simple natu-
ral language based reasoning tasks. However, the training of machine comprehension models
commonly requires a large annotated question-answer dataset for learning. In this paper, we
explore the paradigm of adversarial learning and self-play for machine reading comprehension.
Inspired by the success in the domain of game learning, we propose a novel approach to train
machine comprehension models based on a coupled attention-based model. In this approach,
a reader network is in charge of finding answers to the questions regarding a passage of text,
while an obfuscation network tries to obfuscate spans of text in order to minimize the proba-
bility of success of the reader. The model is evaluated on several question-answering corpora.
The proposed learning paradigm and associated models show promising results.

RÉSUMÉ. Les modèles d’apprentissage profond utilisés sur des tâches de lecture automatique
ont remarquablement progressé ces dernières années. Parmi ces architectures, les modèles
d’attention et à mémoire ont démontré des performances encourageantes sur différentes tâches
de raisonnement. Cependant, le protocole d’apprentissage de ces modèles suppose qu’une
grande quantité d’exemples soient disponibles. Dans cet article, nous proposons d’exploiter
l’apprentissage adversarial et le self-play durant la phase d’entraînement des modèles. Nous
proposons un nouveau protocole d’apprentissage sous la forme d’un jeu entre deux modèles
adverses. Ces modèles sont mis en compétition sur une tâche de question-réponse. D’un côté
un modèle, appelé « lecteur », est chargé de répondre à une question portant sur un document,
et de l’autre un modèle, appelé « réseau d’obfuscation », est chargé d’obfusquer un passage du
document de manière à maximiser la probabilité de tromper le lecteur sur ce document cor-
rompu. Nous avons testé ce protocole sur plusieurs datasets de question-réponse, et ce nouveau
protocole d’apprentissage adversarial permet d’obtenir des résultats encourageants.
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1. Introduction

Automatic comprehension of text is one of the main goals of natural language
processing. While the ability of a machine to understand text can be assessed in
many different ways, several benchmark datasets have recently been created to fo-
cus on answering questions as a way to evaluate machine comprehension (Richardson
et al., 2013; Hermann et al., 2015; Hill et al., 2015; Weston et al., 2015; Rajpurkar
et al., 2016; Nguyen et al., 2016). In this setup, a piece of text such as a news arti-
cle or a story is presented to the machine. The machine is then expected to answer
one or multiple questions related to the text. Figure1 presents question-answering ex-
ample from the Cambridge dataset. Solving this task provides tools that help users
to efficiently access large amounts of information. Furthermore, it also acts as an
important proxy task to assess models of natural language understanding and reason-
ing. Recently, publication of many large datasets (Hermann et al., 2015; Rajpurkar
et al., 2016; Trischler et al., 2017; Nguyen et al., 2016) have contributed to signifi-
cant advancement in machine comprehension and question-answering. Recent neural
models for machine comprehension are now approaching human comprehension on
some of these benchmarks, and there is currently a lot of novel and promising research
on parametric models that feature reasoning capabilities using techniques such as at-
tention and memory. The work in this field is currently following the paradigm of
supervised learning which makes it strictly dependent on the availability of annotated
datasets; the production of which is costly. Since the 1990s an increasingly common
research activity has been dedicated to self-play and adversariality to overcome this
dependency and allow a model to exploit its own decisions to improve itself. Some fa-
mous examples are related to policy learning in games. TD-Gammon (Tesauro, 1995)
was a neural network controller for backgammon which achieved near top player per-
formance using self-play as learning paradigm. More recently, DeepMind’s AlphaGo
(Silver et al., 2016) used the same paradigm to win against the currently best human
Go player. The major advantage of such a setting is to alleviate the learning pro-
cedure’s dependency on an available annotated dataset. Two models can be set up
to learn and improve their performance by acting one against the other in so-called
sparring patterns.

In this paper, we adapt this paradigm to the domain of machine reading. On the
first hand, a reader network is trained to learn to answer questions regarding a pas-
sage of text. On the other hand, an obfuscation network learns to obfuscate words
of a given passage in order to minimize the probability of the reading model to suc-
cessfully answer the question. We developed a sequential learning protocol in order
to gradually improve the quality of the models. This paradigm separates itself from
the current approach of joint question and answer learning from text as proposed by
Wang et al. (2017a). Indeed, rather than using question generation as regularizer of a
reader model, we suggest using adversarial training to free us from the constraint of
strict and bounded supervision and to enhance the robustness of the answering model.

Our contributions can be summarized as follows: (1) We propose a new learning
paradigm for machine comprehension based on adversarial training. (2) With exper-
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Document: This is a very reasonably priced hotel of a good standard for a
short visit. I had a single room (407) at the front of the hotel. On the negative
side, the room was very small, there is street and aircraft noise and it was
too warm. However, they have made excellent use of the space available and
the decor was good. The bathroom was newly fitted out and the shower was
excellent. I found the staff efficient and friendly. Much better than the last
place I stayed in London and cheaper. I didn’t have breakfast but it was
reasonably priced.
Question: How is the service?
Answer: 3/5.

Figure 1. An example from the TripAdvisor dataset.

iments in several machine reading corpora and with several neural architectures, we
show that this methodology allows us to overcome the requirement of strict supervi-
sion and provides robustness to noise in question answering. (3) The attention mecha-
nism allows the visualization of passages considered as meaningful by the obfuscation
network. We present the results of this attention mechanism on multiple examples.

Roadmap:
In Section 2 we review the state-of-the-art of machine reading comprehension, the
paradigm of adversarial learning and its relation to the adversarial learning protocol
proposed in this article. In Section 3, we formalize our adversarial learning proto-
col and introduce the two types of architectures used in this work. In Section 4 we
introduce the corpora used for evaluation. In Section 5 we present our experimental
results, and finally in Section 6, we demonstrate several visualizations of the decisions
and attention values produced by the coupled models.

2. Related work

2.1. End-to-end machine reading

The task of end-to-end machine reading consists of learning, in a supervised man-
ner, to answer a question given a passage of text. One of the popular formal settings
of the problem is the cloze-style question-answering task. This task involves tuples
of the form (d, q, a, C), where d is a document (context) and q is a query over the
contents of d, in which a word has been replaced with a placeholder. The objective is
to fill the placeholder with a word chosen among the set of candidates C. The correct
answer is a. In this work, we consider datasets where each candidate c ∈ C has at
least one token which also appears in the document. The task can then be described as:
given a document-query pair (d, q), find a ∈ C which answers q. Below we provide
an overview of representative neural network architectures which have been applied
to this problem.
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LSTMs with Attention: Several architectures introduced in Hermann et al. (2015)
employ LSTM units to compute a combined document-query representation g(d, q),
which is used to rank the candidate answers. These include the DeepLSTM Reader
which performs a single forward pass through the concatenated (document, query)
pair to obtain g(d, q); the Attentive Reader which first computes a document vector
d(q) by a weighted aggregation of words according to attentions based on q, and then
combines d(q) and q to obtain their joint representation g(d(q), q); and the Impatient
Reader where the document representation is built incrementally. The architecture
of the Attentive Reader has been simplified recently in Stanford Attentive Reader,
where shallower recurrent units were used with a bilinear form for the query-document
attention (Chen et al., 2016).

Attention-Sum Reader: The Attention-Sum (AS) Reader (Kadlec et al., 2016) uses
two bidirectional GRU networks to encode both d and q into vectors. A probability
distribution over the entities in d is obtained by computing dot products between q
and the entity embeddings and taking the softmax. Then, an aggregation scheme
called "pointer-sum attention" is further applied to sum the probabilities of the same
entity, so that frequent entities in the document will be favored compared to rare ones.
Building on the AS Reader, the Attention-over-Attention (AoA) Reader (Cui et al.,
2017) introduces a two-way attention mechanism where the query and the document
are mutually attentive to each other.

Multi-hop Architectures: Memory Networks (MemNets) were proposed in Weston
et al. (2014), where each sentence in the document is encoded to a memory cell by
aggregating nearby words. Attention over the memory slots given the query is used
to compute an overall attention and to renew the query representation over multiple
iterations, allowing certain types of reasoning over the salient facts in the memory and
the query. Neural Semantic Encoders (NSE) (Yu and Munkhdalai, 2017) extended
MemNets by introducing a write operation which can evolve the memory over time
during the course of reading. Iterative reasoning has been found effective in several
more recent models, including the Iterative Attentive Reader (Sordoni et al., 2016)
and ReasoNet (Shen et al., 2016). The latter allows dynamic reasoning steps and is
trained with reinforcement learning.

In other related work, EpiReader (Trischler et al., 2016) consists of two networks,
where one proposes a small set of candidate answers, and the other reranks the pro-
posed candidates conditioned on the query and the context. Bi-Directional Attention
Flow network (BiDAF) (Seo et al., 2016) adopts a multi-stage hierarchical architec-
ture along with a flow-based attention mechanism.

2.2. Adversarial learning

The idea of using an adversarial learning protocol has been very popular during the
last couple of years, particularly in the field of generative models. Indeed Generative
Adversarial Networks (GANs), introduced in (Goodfellow et al., 2014a), have now
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lots of applications and allowed the training protocol to go beyond the strict supervi-
sion of the answer. The main principle of Generative Adversarial Networks (GANs) is
to train jointly two adversarial models. These two models are challenging each other
with opposing objectives and jointly progressing in the task they are designed for. In
machine reading, it has been recently observed that answering a question regarding a
text passage and predicting the question regarding a text passage are interesting tasks
to model jointly. Consequently, several papers have proposed using the question gen-
eration as a regularization task to improve the passage encoding model of a neural
reader (Yuan et al., 2017; Wang et al., 2017a). In this paper, we acknowledge that
these two tasks may indeed be complementary but we believe adversarial training in
two player games will lead to similar advantages than those observed previously. As
generating a question for a passage is hard, we adapt recent work by Guo et al. (2017)
and define the learning of an obfuscation network as a complementary task to the task
of learning a reader. Such an obfuscation network tries to find the most meaningful
spans of text to obfuscate in a given passage for a given question in order to minimize
the probability of the reader successfully answering the question.

2.3. Adaptive dropout

Several studies have recently featured the idea of challenging deep machine read-
ing models with adversarial examples (Miyato et al., 2016; Jia and Liang, 2017).
While this kind of approach is well known in computer vision (Goodfellow et al.,
2014b), it seems to be relevant also for natural language processing. More precisely,
Jia and Liang (2017) demonstrated that a large majority of the recent state-of-the-art
deep machine reading models suffer from a lack of robustness regarding adversarial
examples because of their oversensitivity. It means that small perturbation in the input
can completely disturb the model. In these studies, models suffer from the so-called
catastrophic forgetting; their average accuracies were decreased by half when tested
on corrupted data, i.e., on documents with an additional sentence at the end, which
normally should not affect the answer.

One of the attempts to prevent overfitting is to randomly drop network units while
training (Srivastava et al., 2014). Such an approach effectively results in combining
many different neural networks to make a prediction. In the same spirit, training a
model on a dataset with corrupted data is shown to decrease overfitting. Maaten et al.
(2013) suggest different ways to corrupt a document, for example by adding noise
into the input features; our work refers to what they call the blankout corruption,
which consist of randomly deleting features in the input documents (texts or images
in this case) with probability q. However, learning only from predefined adversarial
examples appears sub-optimal since it is not dynamically adapted to the performance
of the reader.

We think random corruption is not the most efficient way to corrupt the data, but
that the corruption should be dynamically adapted to the performance of the reader.
While obfuscation of one of the keywords can be too hard for the reader at the begin-
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ning of the training, obfuscation of a meaningless word is unlikely to have any effect
on the reader that is good enough. The learning protocol we propose aims to handle
this by training jointly the obfuscation network and the reader in order to adapt the
corruption difficulty to the reader’s performance.

3. Adversarial reading networks

The model we propose is built to use this kind of adversariality as an adaptive
dropout by challenging the reader with more and more difficult tasks during the learn-
ing. Indeed, we utilize asymmetric self-play to train a model called an obfuscation
network that plays an adversarial game against a reader. The obfuscation network
is acquiring knowledge about the reader’s behaviour during the training, and it gen-
erates increasingly hard adversarial examples. Beyond increasing artificially the size
of the available dataset, this adaptive behaviour of the obfuscation network prevents
catastrophic forgetting phenomena of the reader. In this section, we first explain our
protocol of adversarial training for robust machine comprehension and then describe
the reader and obfuscation network models.

3.1. Adversarial learning protocol

The overall framework is a turn-based question-answering game described in Fig-
ure 2 and algorithm 1. At the beginning of each round t, the obfuscation network
obfuscates one word for each document sampled from the training corpus. We fix the
ratio of corrupted data / clear data to a ratio λ ∈ [0, 1] of the dataset. Indeed, too
low a percentage of corrupted data might not have any effect on the training and a
too high one will prevent the reader of learning well. The reader is then trained on a
subset of this obfuscated corpus and tested on the remaining subset. Note that both
train and test sets contain corrupted data. Finally, the obfuscation network gets back
a set of rewards regarding the reader performance on the obfuscated stories. Given a
tuple (d, d†, q) where d is the original document, d† the document with an obfuscated
word proposed by the obfuscation network and q the associated question, the reward
r given to the obfuscation network is defined as follows:

r =

{
1 if the reader answers well on d and fail on d†

0 otherwise.

The reward given to the obfuscation network is a direct measurement of the impact
of the obfuscation on the reader performance. All the previously collected rewards are
stored and used for experience replay throughout the turns. After each learning turn,
all the parameters of the obfuscation network are reinitialized and retrained on all the
recorded rewards. Throughout the turns, the obfuscation network accumulates infor-
mation about the reader behaviour and proposes more challenging tasks as the game
continues. Among the corrupted documents that the obfuscation network proposes



Adversarial Reading Networks 83

to the reader, 80% of the documents maximize the probability of fooling the reader
from the obfuscation network point of view and 20% are randomly corrupted in or-
der to ensure exploration. Finally, the reader keeps improving through time and any
catastrophic forgetting is compensated at the next turn of the obfuscation network by
focusing on these errors.

Figure 2. Adversarial learning protocol with DR = {di, qi, ai}i the reader dataset
composed by tuples (document, question, answer) and DO = {di, qi, ai, ri}i the ob-
fuscation network dataset composed by tuples (document, question, answer, reward
from the reader).

To more formally specify loss functions for the reader and the obfuscation network,
let âij , P (ansij |qi, d†i ) denote the reader’s predictive probability for ansij being
the correct answer to the question qi for j ∈ [0, n] where n is the number of possible
answers. Let us denote the index of the actual correct answer by ij∗. The reader is
trained to minimize the cumulative log-loss (cross-entropy) for N questions

LReader = −
N∑
i=1

log âij∗ . [1]

The obfuscation network is trained to fool the reader, so it suffers a loss when it
fails to predict whether the reader gives a correct answer ansij∗ . By denoting the indi-
cator of the reader answering the question qi wrong by faili ∈ {0, 1} and obfuscation
network’s estimate of the probability of this failure by âi , P (faili = 1|qi, d†i ), the
obfuscation network’s loss is defined as

LObfNet = −
N∑
i=1

faili log âi + (1− faili) log(1− âi). [2]
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Algorithm 1 Adversarial training
input: Let I be the initial set of data {(d, q, a)}i where d, q, a are sequences of
index representing a document, a question and an answer.
Let A be the training set (80% of I)
Let B be the validation set (10% of I)
Let C be the testing set (10% of I)
Let D be an empty dataset
t = 0
while t < NB_MAX_EPOCHS do

Split A into A1 (80%) and A2 (20%)
if t = 0 then

Let A†1 be A1 with 20% of random corruption
Let A†2 be A2 with 100% of random corruption

else
Reinitialize all the parameters of the obfuscation network
Train the obfuscation network on D
Let A†1 be A1 with 20% of data corrupted by the obfuscation network
Let A†2 be A2 with 100% of data corrupted by the obfuscation network

end if
Train one epoch of the reader on A†1
for all ((d, q, a) ∈ A2, (d

†, q, a) ∈ A†2) do
Let r be the reward given to the obfuscation network
if the reader succeed on d and fails on d† then
D ← {D ∪ (d†, q, a, r = 1)}

else if the reader succeed on d and succeed on d† then
D ← {D ∪ (d†, q, a, r = 0)}

end if
end for
Let εt be the empirical error of the reader on B
if εt > εt−1 then

Stop the learning
end if
t← t + 1

end while
Report the empirical error of the reader on C

3.2. Baseline learning protocol

In our reference protocol, the corruption is made by randomly obfuscating a word
in several documents. This is a naive variation of the first protocol where the obfus-
cation network does not learn from the reader feedback at all. In fact, this protocol
is similar to a dropout regularization on the embeddings layer that allows avoiding
overfitting the training set. However, the obfuscation is independent of the reader per-
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formance; especially, it does not take into account the difficulty of the questions. In
practice, this simple adversarial protocol still improves the robustness of the results
compared to a standard learning protocol. This learning protocol has strong similari-
ties with the one proposed by Maaten et al. (2013).

3.3. Reader network

To illustrate this work, we investigate two types of neural architectures: a memory
based architecture with a Gated End-to-End Memory Network (Liu and Perez, 2017b)
(GMemN2N) and a multi-layer attention based architecture largely inspired by the recent
R-Net(Wang et al., 2017b) excepted for its output layer, adapted to the format of the
datasets used in this work. These two architectures are state-of-the-art models for
machine reading and most of the recent models are a combination of layers included
in these two architectures. Paragraphs below describe these two architectures and how
we have integrated them in the adversarial learning protocol.

3.3.1. Gated End-to-End Memory Network reader

The first model used as a reader is a Gated End-to-End Memory Network (Liu
and Perez, 2017b), GMemN2N (Figure 3). This architecture is based on two different
memory cells and an output prediction. An input memory representation {mi} and
an output representation {ci} are used to store embedding representations of inputs.
Suppose that an input of the model is a tuple (d, q) where d is a document, i.e., a set
of sentences {si}, and q is a query about d. The entire set of sentences is converted
into input memory vectors mi = AΦ(si) and output memory vectors ci = CΦ(si)
by using two embedding matrices A and C. The question q is also embedded using a
third matrix B, u = BΨ(q) of the same dimension as A and C, where Φ and Ψ are
respectively the document embedding function and the question embedding function
described in the next paragraph. The input memory is used to compute the relevance
of each sentence in its context regarding the question, by computing the inner product
of the input memory sentence representation with the query. A softmax is then used
to map the inner product to a probability. The response o =

∑
i pici from the output

memory is the sum of the output memory vectors {ci} weighted with the sentence
relevancies calculated before pi = softmax(uTmi). A gated mechanism is used when
we update the value of the controller u:

T k(uk) = σ(W k
Tu

k + bkT ), [3]

uk+1 = ok � T k(uk) + uk � (1− T k(uk)), [4]

where W k
T are matrices of size d × d and bkT a vector of size d with d the size of

the memory cells.
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Figure 3. Gated End-to-End Memory Network (Liu and Perez, 2017b).

Assuming we use a model with K hops of memory, the final prediction is:

â = softmax(W (oK + uK) + b), [5]

where W is a matrix of size d × v and b a vector of size d with v the number of
candidate answers. In this model, we do not use the adjacent or layer-wise weight
tying scheme and all the matrix Ak and Bk of the multiple hops are different.

Text and question representations (Figure 4): To build the sentence represen-
tations, we use a 1-dimensional Convolutional Neural Network (CNN) with a list
of filter sizes over all the sentences as proposed in Kim (2014). Let [s1, . . . , sN ]
be the vectorial representation of a document with N sentences where si =
[wi,1, wi,2, . . . , wi,n] is the i − th sentence which contains n words. Given a con-
volutional filter F ∈ Rh×d where h is the width of the convolutional window, i.e, the
number words it overlaps, the convolutional layer produces:

ci,j = f(F � [Ewi,j , . . . , Ewi,j+h]),∀j ∈ [1, n− j], [6]

where � is the element-wise multiplication, f a rectified linear unit (ReLU) and E
is the embedding matrix of size d × V where V is the vocabulary size and d the
word embedding size. Then, a max pooling operator is applied to this vector to extract
features. Given a filter F , after a convolutional operation and a max pooling operation,
we obtain a feature ĉi = maxj(ci,j) from the ith sentence of the text. Multiple filters
with varying sizes are used. Assume that our model uses Ns different filter sizes and
Nf for each size, we are able to extract Ns ×Nf features for one sentence. The final
representation of the sentence is the concatenation of the extracted features from all
the filters:

Φ(si) = [ĉiF1
, ĉiF2

, . . . , ĉiFNs∗Nf
]. [7]

Compared to an LSTM encoding the CNN layer is faster and gives better results
on the different tasks we evaluated our model. This result seems coherent with recent
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Figure 4. An encoded sentence where d is the word embedding size, Nf the number
of filters of each size and Ns the number of different filter sizes used.

results of Dauphin et al. (2017). We use a bidirectional GRU to encode the question.
The question representation Ψ(q) is the concatenation of the final states of the forward
and backward GRU on this question.

3.3.2. R-Net based network

The second architecture investigated in this article is based on the state-of-the-
art R-Net model (Wang et al., 2017b). The main part of the architecture remains
the same as the original model, except for the last layer. We replaced the pointer
network, originally used to select in the document the span of text that corresponds to
the answer, by a fully connected layer followed by a softmax to output the probability
of each candidate word to be the answer. The following lines describe the structure of
this architecture, composed of multiple stacked layers.

Encoding layer: Each sentence is tokenized by word and each token is represented
by the concatenation of the word level, and character level embeddings. The word
level embedding is computed via a lookup table initialized with GloVe pre-trained
embeddings and the character embedding of a token is the final state of a GRU network
over the sequence of its characters. Finally, these tokens are fed to a Recurrent Neural
Network (RNN) and the document and question are represented by the intermediate
states of this RNN.

Gated question/document attention: Assuming that d = {udi }Ni=0 and q =
{uqi }Ni=0 are the sequences of embedding tokens of the document and the question
after the encoding layer with N the length of the document and n the length of the
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question. Then we compute an attention between the representation of the question
and each token of the document. The document is transformed to d = {vdi }Ni=0 with:

vdi = RNN(vdi−1, [u
d
i , ci]),

where ci is an attention vector of the question over the token i of the document. This
layer produces a question-aware representation of the document.

Self-attention: So far each token contains information from the question due to
the question/document attention layer and from its surrounding context due to the
RNN at the end of the encoding part but does not handle long-term dependencies
inside the document. The self-attention layer produces an attention between the whole
document and each individual token of it. d = {hdi }Ni=0 with:

hdi = BiRNN(hdi−1, [v
d
i , ci]),

where ci is an attention vector of the whole document over the token i.

Output layer: The decision support is the concatenation of the hi, for i ∈ [0, N ].
od = concat({hi}Ni=0) and finally:

â = softmax(Wod + b),

where W is a matrix of size N ∗ d × v and b a vector of size d with v the number of
candidate answers.

3.4. Obfuscation network

The objective of this model is to predict the probability of the reader to successfully
respond to a question about a document with an obfuscated word. This estimate will
be used by the obfuscation network to determine the position of the obfuscated word
in the document which maximizes the probability of the reader to fail its task. We use
a similar architecture as the reader, i.e a GMemN2N when the reader is a GMemN2N and
a R-Net when the reader is a R-Net. However, on the last layer, a sigmoid function
is used to predict the probability of the reader to fail on this input: Assuming that o is
the decision support of the obfuscation network, then:

â = σ(Wo+ b), [8]

where σ(x) = 1
1+e−x and â ∈ [0, 1] is the predicted probability of failure of the reader

and W a matrix of size d × 1. We impose this symmetry between the architecture of
the reader and of the obfuscation network in order to keep a fair challenge between
the two adversary networks.

An input to the reader is a tuple (d†, q) where d† is a document with an obfuscated
word. To obfuscate a word, we replace it by the word unk for unknown. The output
of the obfuscation network is a real number r ∈ [0, 1] which is the expected probabil-
ity of the reader to fail on the question. The objective of the obfuscation network is
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to select the corrupted document which maximizes this reward. We use the same text
passage and query representation as for the reader, based on a CNN with different filter
sizes for the document and the two last hidden states of a bidirectional Gated Recti-
fied Unit (GRU) recurrent network for the question encoding for the GMemN2N and
based on character and word level embeddings for the R-Net. Both models are fully
differentiable.

4. Datasets and data preprocessing

Cambridge Dialogs: The transactional dialog corpus proposed by Rojas-
Barahona et al. (2017) has been produced by a crowdsourced version of the Wizard-
of-Oz paradigm. It was originally designed for dialog state tracking, but Liu and Perez
(2017a) have shown that this task could also be considered as a reading task. In such
setting, the informable slots provided as metadata to each dialog were used to produce
questions for a dialog comprehension task. The dataset deals with an agent assisting a
user to find a restaurant in Cambridge, UK. To propose the best matching restaurant,
the system needs to extract 3 constraints which correspond to the informable slots
in the dialog state tracking task: Food, Price range, Area. Given a dialog between
an agent and a user, these informable slots become questions for the model we pro-
pose. The dataset contains 680 different dialogs about 99 different restaurants. We
preprocess the dataset to transform it into a question-answering dataset by using the
three informable slot types as questions about a given dialog. After this preprocessing
operation, we end up with our question-answering formatted dataset which contains
1,352 possible answers.

Document: I want the phone number of a moderately priced restaurant with
Spanish food.
La Tasca would fit the bill. Its phone number is 01223 464630.
Can you tell me what area of town it is located?
La Tasca is located in the center part of town.
Thank you, goodbye.
You’re welcome.
Question: What is the area?
Answer: Center.

Table 1. An example from the Cambridge dataset formatted for question-answering
task.

TripAdvisor aspect-based sentiment analysis: This dataset contains a total of
235K detailed reviews extracted from the TripAdvisor website and originally released
by Wang et al. (2010). These reviews represent around 1,850 hotels. Each review
is associated to an overall rating, between 0 and 5 stars. Furthermore, 7 aspects:
value, room, location, cleanliness, checkin/front desk, service, and business service
are available. We transform the dataset into a question-answering task over a given
review. Concretely, for each review, a question is an aspect and we use the number of



90 TAL. Volume 59 – n◦2/2018

stars as the answer. This kind of machine-reading approach to sentiment analysis was
previously proposed in Tang et al. (2016).

Document: Service was ok, staff helpful, room was basic, marks on bedding
top cover looked like blood, sheets clean, bathroom not so nice, broken tiles
on floor, shower head was disgusting and needed to be replaced, location
was good, close to the metro and the Colosseum, both only a 10 min walk,
liked that the hotel was close to many cafe’s restaurant’s, disliked the shower
in room.

Question: How is the cleanliness?
Answer: 2/5.

Question: How is the service?
Answer: 3/5.

Table 2. An example from the TripAdvisor dataset.

Children’s Book Test (CBT): The dataset is built from freely available books
(Hill et al., 2015) produced by Project Gutenberg 1. The training data consists of
tuples (S, q, C, a) where S is the context composed of 20 consecutive sentences from
the book, q is the query, C a set of 10 candidate answers and a the answer. The
query q is the 21st sentence, i.e., the sentence that directly follows the 20 sentences of
the context and where one word is removed and replaced by a missing word symbol.
Questions are grouped into 4 distinct categories depending of the type of the removed
word: Named Entities (NE), (Common) Nouns (CN), Verbs (V) and Prepositions (P).
This division of answers according to the type of the word that has been removed
give a way to evaluate the performance of a model in different situations. It provides
relevant information on the strengths and weaknesses of a given architecture. The
training contains 669,343 inputs (context+query) and we evaluated our models on
the provided test set which contains 10,000 inputs, 2,500 per category. This dataset
evaluates the capability that a model has to predict a word based on its context.

1. https://www.gutenberg.org.

https://www.gutenberg.org
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Document:
1 When she got home she shut herself up in her room and cried.
2 There was nothing for her to do but resign, she thought dismally.
3 On the following Saturday Esther went for an afternoon walk, carrying her
Kodak with her.
4 It was a brilliantly fine autumn day, and woods and fields were basking in
a mellow haze.
19 Bob and Alf Cropper were up among the boughs picking the plums.
20 On the ground beneath them stood their father with a basket of fruit in his
hand.

Question: 21 Mr. Cropper looked at the XXXXX and from it to Esther.
Answer: proof
Candidates: Saturday | boughs | face | father | home | nothing | proof |
remarks | smile | woods

Table 3. An example from the CBT dataset.

5. Experiments

In this section, we present our experimental settings and the results of this adver-
sarial training protocol on the three datasets presented in Section 4.

5.1. Training details

10% of the dataset was randomly held-out to create a test set. We split the dataset
before all the training operations and each protocol was tested on the same test dataset.
For the training phase, we split the training dataset to extract a validation set to per-
form early stopping. We used Adam optimizer (Kingma and Ba, 2014) with a starting
learning rate of 0.0005. We set the dropout to 0.9 which means that during training,
randomly selected 10% of the parameters are not used during the forward pass and not
updated during the backward propagation of error. We also added the gated memory
mechanism (Liu and Perez, 2017b) that dynamically regulates the access to the mem-
ory blocks. This mechanism had a very positive effect on the overall performance of
our models. All weights were initialized randomly from a Gaussian distribution with
zero mean and a standard deviation of 0.1. We augmented the loss with the sum of
squares of the model parameters.

The hyperparameters have been chosen via cross-validation on the validation set of
the different datasets. We set the batch size to 16 inputs and we used word embeddings
of size 300. We initialized all the embedding matrices with pre-trained GloVe word
vectors (Pennington et al., 2014) and used random vectors for the words not present in
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the GloVe. It seems that for our experiments CNN encoding does not improve only the
overall accuracy of the model compared to LSTM but also the stability by decreasing
the variance of the results. So, in practice, we used 128 filters of size 2, 3, 5 and 8
resulting in a total of 512 filters for the one-dimensional convolutional layer.

We repeated each training 10 times for the first two datasets and report maxi-
mum and average accuracy. The average value corresponds to the average score over
the 10 runs on the test set. Maximum value corresponds to the score on the test set
achieved by the model that performed best on the validation set. During the adversar-
ial learning, the dataset contained 70% of clear dialogs and 30% of corrupted dialogs,
λ = 0.3. Inside these corrupted data, 20% were randomly obfuscated by the obfusca-
tion network in order to make it learn from exploration and the obfuscation network
maximized its reward for the remaining 80%. Due to the format of the dataset, we
slightly modified the output layer of our reader for the CBT task. Instead of projecting
on a set of candidate answers, the last layer of the reader made a projection on the
entire vocabulary â = σ(M �W (oK +uK)) where W is a matrix of size V × d with
V the vocabulary size, � the elementwise product and M the mask vector of size V
containing 1 if the corresponding word is proposed in the candidate answers, and 0
otherwise.

5.2. Results

In this section, we report the results of our implementation of two baselines: a
simple logistic regression and an Attention-Sum Reader (Kadlec et al., 2016). Then
we present the results of our implementation of the two neural architectures presented
in Section 3.3, trained with the standard training, the uniform training, which is the
reader trained with the baseline protocol 3.2 and with our adversarial learning protocol
3.1.

Log Reg ASR GMemN2N uniform GMemN2N adversarial GMemN2N
hops 4 5 6 4 5 6 4 5 6
Max 58.4 40.8 82.1 85.8 80.6 85.1 85.8 82.8 82.8 79.8 88.1
Mean 58.2 39.5 76.9 74.8 74.2 77.4 77.7 74.9 79.8 77.8 79.6

R-Net uniform R-Net adversarial R-Net
Max 88.1 89.5 90.8
Mean 87.5 89.2 90.0

Table 4. Average and maximum accuracy (%) on the Cambridge dataset on 10 repli-
cations. In bold, the best result per architecture.
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Log Reg ASR GMemN2N uniform GMemN2N adversarial GMemN2N
hops 4 5 6 4 5 6 4 5 6
Max 59.4 45.2 62.3 62.4 60.5 63.1 61.4 63.1 64.6 63.5 62.3
Mean 59.0 42.3 60.8 60.6 58.5 62.3 60.3 59.6 62.8 61.2 60.8

R-Net uniform R-Net adversarial R-Net
Max 62.3 63.8 64.5
Mean 61.9 62.2 63.0

Table 5. Average and maximum accuracy (%) on the TripAdvisor dataset on 10 repli-
cations. In bold, the best result per architecture.

Tables 4 and 5 display the scores obtained by these models on the Cambrige and
TripAdvisor datasets. Each experiment was run 10 times and we report in this table the
maximum score on the test set (based on the validation set) and the average score. The
precise number of hops needed to achieve the best performance with the GMemN2N is
not obvious, so we present all the results for readers and obfuscation networks between
4 and 6 hops.

We observe that the adversarial learning protocol improves the accuracy of the
GMemN2N and R-Net compared to the standard and uniform training protocol for all
the experiments.

We improve the score of the reader by 2.3 points on the Cambridge task for a
GMemN2N with 6 hops compared to the standard training. This adversarial protocol,
applied to the R-Net architecture, improves the average score by 2.5 points on this
dataset.

The best performance on the TripAdvisor dataset was achieved by the adversarial
R-Net. On 10 replications of the experiment, the average accuracy of this model was
improved by 1.1 points compared to the standard approach.

The GMemN2N with 4 hops achieved the best performance of this architecture. The
accuracy was improved by 1.5 points when the model was trained with our adversarial
protocol.

The uniform protocol improves the stability of the performance compared to a
standard reader but further improvements were obtained with the adversarial protocol
which improved both the overall accuracy and the stability of the performance. Indeed
the variance of the results decreased when the training was done with the adversarial
protocol, especially for the GMemN2N. Such architecture does not always converge to
the optimal minima and the adversarial learning, acting as an adaptive dropout, seems
to help the model to generalized better. It is not clear, for this task, whether the number
of hops, between 4 and 6, affects the general behaviour, but we achieved the best
performance with our adversarial protocol and a reader with 6 hops.
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Log Reg ASR
Task P V NE CN P V NE CN
Max 56.3 37.1 26.5 25.6 24.7 32.7 22.1 18.3

GMemN2N uniform GMemN2N adversarial GMemN2N
Task P V NE CN P V NE CN P V NE CN
Max 56.0 58.5 31.9 39.0 58.1 53.6 31.6 34.0 71.1 60.4 35.3 39.4

R-Net uniform R-Net adversarial R-Net
Task P V NE CN P V NE CN P V NE CN
Max 55.0 68.3 44.0 42.6 56.3 68.9 43.8 40.7 60.0 70.0 44.5 42.9

Table 6. Accuracy (%) on the CBT dataset. In bold, the best result per architecture.

Performance on the CBT dataset are displayed in Table 6. Because of the size
of this dataset, we didn’t repeat the training 10 times but only once. Results of the
uniform training seem similar to the performance of the standard reader in this case but
the accuracy of the models trained with our adversarial protocol remains higher
than others’. This last experiment shows that augmenting the data distribution with
random adversarial examples might not help the training as it was explained by Jia
and Liang (2017). But we show that even in that case the protocol we propose is able
to generate smart adversarial examples that will finally help the reader to improve its
overall performance.

6. Visualizations and analysis

In this section, we present a series of analysis of the behavior of the competitive
networks to better understand how the adversarial setting affects the training. We
propose to analyze the probabilities of obfuscation of the different words of a given
input (d, q, a).

In order to better understand how the obfuscation network learns from the reader
behaviour during the adversarial protocol, Figure 5 depicts the rewards that the ob-
fuscation network expects for each word of a document after several rounds of the
game. Given a tuple (d, q) where d is a clear document and q a query, and assuming
the document contains k words, we generate k corrupted documents where one word
is obfuscated in each of them. We then feed the obfuscation network with these cor-
rupted data and report the results. The expected rewards from the reader are displayed
in green on the document. A strong intensity means that a high reward is expected.
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0 1

Figure 5. Rewards expected by the obfuscation network after 100 rounds over a Cam-
bridge dialog.
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0 1

Figure 6. Rewards expected by the obfuscation network after 100 rounds over a
TripAdvisor review.

We see that the obfuscation network tends to obfuscate some important keywords
of the dialogs in Figure 5. Furthermore, the obfuscation network is not pointing on
a single word but it points on a word and on its neighborhood. This could be a con-
sequence of the encoding which is not only a representation of a single word but a
representation of a word in its context. In Figure 6, we can see that the obfuscation
network tends to affect a high probability of getting a reward for multiple words of the
review. This can be a consequence of the performance of the reader on this dataset.
Indeed if the reader is not generally confident about its answers, small changes in the
reviews could lead to fool it. However, we can see on the figure that the most proba-
ble regions obfuscated by the obfuscation network refer to the cleanliness of the hotel
which is coherent with the question.
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7. Conclusion and future work

In this paper, we propose an adversarial learning protocol to train coupled deep
neural networks for the task of machine reading. We propose two baselines, a Logistic
Regression and an Attention-Sum Reader, on the three datasets used for our experi-
ments. Then we experiment our adversarial learning protocol on two main types of
neural architectures based on state-of-the-art machine reading models: a GMemN2N and
a R-Net. In addition, we compare our adversarial protocol to a protocol based on a
uniform corruption of data.

On all the reported experiments, the models trained with our novel protocol outper-
form the equivalent models trained with a standard supervised protocol or a protocol
that introduces a uniform noise in the data which correspond to the more classic ap-
proach of dropout. Moreover, our adversarial protocol seems to improve the stability
of the models’ performance. Indeed, the variance of the results decreased when the
training was done in an adversarial setup. We propose several visualizations that allow
interpreting how the reader produces an answer, and which parts of the document are
crucial for it to take its decision.

In future work, we plan to improve this novel protocol through an active question-
answering task. Indeed the choice to only let the obfuscation network remove a single
word might not be optimal. We would like to let it obfuscates multiple words while
letting the reader the possibility to ask for revealing several words that might help it
during training. Finally, we are currently investigating an adaptation of this protocol
to Visual Question Answering.

The lack of robustness against adversarial examples and the difficulty to train deep
neural networks with a limited set of data is not a specificity of language processing.
This adversarial way of training deep neural networks should not be restricted to text
documents but we think that it can also be useful in other domains.
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