
Cocytus: parallel NLP over disparate data

Noah Evans — Masayuki Asahara — Yuji Matsumoto

Nara Institute of Science and Technology
8916-5, Takayama-cho, Ikoma-shi
Nara 630-0192 JAPAN

ABSTRACT. As NLP deals with larger datasets and more computationally expensive algorithms,
cutting–edge NLP research is increasingly becoming the province of companies like Google
who can use an astronomical amount of resources to do NLP tasks. Smaller institutions are
being left behind. In addition to this lack of resources, what resources a typical researcher does
have access to are represented in a variety of differing, incompatible data formats and operat-
ing system semantics. NLP researchers devote a large amount of research time developing NLP
tools to support a variety of different data formats, time that could be spent doing productive
research. To solve these problems of data representation and processing huge data, this paper
presents Cocytus, a platform for creating NLP tools loosely based on Unix, that handles dif-
ferent data formats and parallel computation transparently, thus allowing institutions to make
maximum use of their resources.

RÉSUMÉ. Au fur et à mesure que le TAL se confronte à des données de plus en plus volumineuses,
et fait appel à des algorithmes de plus en plus complexes, la recherche en TAL devient de plus
en plus l’apanage de sociétés telles que Google, qui peuvent utiliser une quantité astronomique
de ressources pour accomplir des tâches de TAL. Les instituts de recherche les plus petits ne
peuvent pas suivre. Les ressources auxquelles les chercheurs ont accès ne sont pas seulement
insuffisantes, elles sont également très hétérogènes, se présentant dans des formats très variés,
incompatibles entre eux. Les chercheurs en TAL consacrent donc une part importante de leur
temps à développer des outils qui supportent cette variété de formats, au détriment d’activités
plus productives. Cocytus, la plateforme présentée dans cet article, est précisément conçue
pour apporter des solutions à ces problèmes d’hétérogénéité et de volume des données à traiter.
Cocytus permet de développer des outils de TAL sur la base d’utilitaires Unix, offrant un accès
transparent aux données et à des ressources de calcul parallèles. Cocytus permet ainsi aux
instituts de recherche de tirer le meilleur parti de leurs ressources.

KEYWORDS: querying, scalable, cloud computing, Inferno, MapReduce

MOTS-CLÉS : passage à l’échelle, informatique distribuée, Inferno, MapReduce

Traitement Automatique des Langues. Volume 49 – n◦ 2/2008, pages 271 à 293

272 Traitement Automatique des Langues. Volume 49 – n◦ 2/2008

1. Motivation

NLP applications are still catching up to the explosive growth of data sources like
the web. The size of corpora are no longer measured in megabytes or gigabytes —now
terabytes and petabytes— and the amount of this data is increasing exponentially.

In spite of this increase, most NLP applications are not designed to handle large
datasets. They are one-off tools designed to solve a particular problem or prove a
research point. These applications deal with data in an ad hoc manner, emphasizing
quick solutions over generality. This lack of standardization, as well as rapid progress
and differentiation in areas such as character sets and structured data, makes develop-
ing a viable NLP tool difficult without wasting effort developing support for a variety
of differing data formats and character sets.

In addition to this wasted effort, NLP algorithms are typically computationally in-
tensive, especially statistical NLP algorithms. NLP computations, especially machine
learning algorithms like classifiers, can take weeks to complete even on fast machines.
This intensity, coupled with the massive size of datasets available, makes handling the
current problems facing NLP difficult to solve with common tools. The ad hoc imple-
mentation of most tools makes it difficult for them to handle larger sets of data.

Currently there are two common methods used to solve the problem of NLP scala-
bility. The first and, until recently, the most common approach has been to use efficient
specialized algorithms and formats on top of increasingly more powerful systems. By
increasing the efficiency of the solution and the computational power available to im-
plement the solution, it has been possible to keep up with the increasing amount of
linguistic data. The move to XML databases and specialized querying described in
Bird et al. (2004) is indicative of this approach to dealing with NLP problems scal-
ably.

The other, more recent, approach is a move towards cloud computing, dealing
with huge amounts of data by distributing data over a variety of computing resources.
Google is the most successful advocate of this approach, processing over 20 petabytes
of data daily using its MapReduce algorithm (Dean and Ghemawat, 2008).

However, as the size of data increases, smaller institutions, notably small univer-
sities and startup companies, are being left behind. Even small cloud clusters can
be beyond the resources of a small institution. There are attempts to make high–
performance NLP problem–solving widely available using MapReduce (Pantel, n.d.),
but these systems rely on an external system shared among institutions.

2. Cocytus: a NLP framework based on Inferno

The Cocytus system attempts to mitigate this comparative lack of resources by
providing an architecture that maximizes all of the available resources of an institu-
tion to deal with NLP problems, especially unused computational resources like lab
computers and linguistic resources like corpora in a variety of formats. With this goal

Cocytus: parallel NLP over disparate data 273

in mind Cocytus has a structure that is very different from most conventional NLP
systems. Other systems like UIMA (Ferrucci and Lally, 2004) or GATE (Cunningham
et al., 1995) are typically built on top of an operating system with very little inte-
gration with the system itself. They are self–contained, heavily engineered systems
that take a variety of NLP problems and workflows into account and create workflow
management architectures to solve NLP problems.

Cocytus does not take this approach. Instead of forcing the user into a predefined
workflow pattern or defining the system as a monolithic program, Cocytus is built on
top of Inferno (Dorward et al., 1997), a hosted, distributed operating system developed
by Bell Labs and now distributed and maintained by Vita Nuova1. Inferno gives users
greater flexibility by providing a traditional Unix-style interface that deals with issues
such as supporting a variety of character sets or handling a variety of structured data
formats, that traditional systems deal with at the software level, at the systems level.
Cocytus supports data formats and parallelization not in a monolithic system, but in
a variety of small programs that alter the behavior of the operating system itself, pre-
senting a variety of disparate resources in a standardized way for all programs using
Cocytus.

This allows users to take advantage of the facilities and tools provided by the un-
derlying operating system to solve NLP problems using a workflow and development
cycle similar to Unix. Inferno’s architecture allows Cocytus to be small (Cocytus is
less than 10,000 lines of code, not counting its underlying operating system, Inferno,
and most of Cocytus is prebuilt modules to deal with various character sets and struc-
tured data formats). Its small size and resulting comprehensibility encourage further
research by letting users change and improve all of the system.

Currently Cocytus is being used to solve a variety of problems in the NAIST com-
putational linguistics lab, primarily N-gram and structured data editing and extraction.

This paper is an overview of the system.

3. Foundations

The underlying structure of Cocytus differs substantially from current NLP mid-
dleware systems. The following section describes aspects of the underlying architec-
ture of Cocytus necessary to understand the implementation and advantages of the
system.

Cocytus implements this system by using a hosted operating system, Inferno, and
its native support for pipes and UTF-8, to create a system that allows the creation
of NLP tools in a modular way, with a consistent way of representing NLP data.
Cocytus implements this system by changing the representation of linguistic resources
—currently limited to corpora— creating pipelined applications and by distributing

1. http://www.vitanuova.com.

http://www.vitanuova.com

274 Traitement Automatique des Langues. Volume 49 – n◦ 2/2008

the now modular applications computation over a heterogeneous set of computing
resources. Figure 1 gives an overview of the system and its structure:

Inferno

OS

Conversion Tools

Shell

Process Distribution
\texttt{Cocytus} is a SALE, a stable
platform to solve NLP problems in

scalable, reusable way.
Instead of trying to implement its

functionality as a software
program running inside of the

\emph{user space} of the operating
system,

\texttt{Cocytus} forces
all the dependencies of a typical

SALE, Conversion tools and Process
distribution

in the behavior of the operating
system itself. This allows NLP

researchers to concentrate creating
tools

to solve NLP or CL problems
rather than thinking about issues
outside of the problem they are

trying to solve.

Figure 1. Cocytus is an NLP platform that allows researchers to solve NLP prob-
lems in a scalable, reusable way. Instead of trying to implement its functionality as
a software program running in user space, Cocytus forces all of the dependencies of
a traditional NLP platform —tools to deal with different data formats and workflow
execution— into the behavior of the operating system itself. This allows NLP re-
searchers to concentrate on creating tools to solve problems, not deal with extraneous
issues like concurrency and data formats.

To implement this transparency of representation, Cocytus is fundamentally two
structures built on top of Inferno. The first, the set of conversion tools, converts a
variety of NLP data formats into Cocytus’ native formats without any action by the
users. This allows users to use a variety of linguistic resources, for example data
marked up in XML and s-expressions, as the same format. This takes the complexity
of format support out of tool development and moves it to the systems level, meaning
that once a format is supported, it can be ignored by the user, as everything appears
to be in one format. Cocytus puts special emphasis on representing character sets and
structured data formats in a common format.

Cocytus’ other structure is a shell–based process distribution mechanism. This al-
lows Cocytus to take preexisting tools and distribute them transparently over a variety
of machines with no explicit distribution by the user. This allows Cocytus users to
tackle problems and tasks that are too processor –or resource– intensive for traditional
systems.

3.1. Inferno

Inferno is a Unix derivative by way of Plan 9 (Pike et al., 1995), which leads to an
operating system that functions similarly to Unix in many ways. Inferno follows the

Cocytus: parallel NLP over disparate data 275

basic Unix philosophy: input and output are through files, including device IO which
is done through file interfaces. It contains a limited but powerful set of system calls,
create, read, write, open, remove, stat, spawn(fork), and pipe among others. It also
includes new versions of the standard set of Unix tools, a shell, systems programming
language Limbo (Ritchie, n.d.), editor, window system, and other user programs.

Architecturally Inferno is primarily a hosted operating system, although the system
can also be built as native kernel. Both kernels are virtual machines running a register–
based virtual machine called DIS (Winterbottom and Pike, n.d.). Figure 2 gives an
overview of the structure of an Inferno system:

Inferno kernel

Styx server

Styx server

Styx server

User
ProgramStyx server

Styx server

namespace
root

Figure 2. The Inferno operating system is made up of Styx servers which serve names-
paces, Inferno’s version of filesystems. Unlike other systems namespaces are not han-
dled by the kernel, they are handled by individual processes. This allows each process
to make its own view of the system. Processes can share, replace, and create resources
transparently, including over networks.

3.1.1. Namespaces

While Inferno’s Unix ancestry gives it a simple consistent interface, many of its
advantages come from where it differs from Unix. What makes Inferno unique in re-
lation to Unix is its novel interpretation of file systems. Inferno does not follow the
typical Unix model, where file systems are a representation of the underlying physical
files of the system with a few additional unique files synthesized by the kernel.2 In-

2. E.g., /proc or /dev.

276 Traitement Automatique des Langues. Volume 49 – n◦ 2/2008

stead, Inferno has per process namespaces, synthetic filesystems that act in a similar
way to Unix mount tables (Thompson, 1978), but whose tables are maintained by in-
dividual processes, not by the kernel. This allows processes to dynamically determine
their environment, adding, removing, and overriding resources and file hierarchies as
they see fit, including devices like monitors, mice, and network devices as well as
completely abstract file systems like file–based representations of mail queues.3 This
allows systems to easily represent, distribute, and replace any system resource using
the Styx protocol described in the next section. Figure 3 describes an Inferno names-
pace. ./file6

User Program

namespace root

Styx
namespace

./mouse ./display ./keyboard

Styx
namespace

./cat ./ed ./grep

Styx
namespace

./dev ./home ./bin

Figure 3. The program namespace is determined through the root, then the names-
pace is made synthetically by combining the resources together by mounting them in
other nodes of the namespace. New programs inherit their parents’ namespace and
any changes made to the program’s namespace are private to that program and its
children. Changes made to one program’s namespace are invisible to other programs,
allowing different programs to have namespaces that are completely different from
one another.

3. Plan 9’s upasfs(1) is a good example of this kind of file system.

Cocytus: parallel NLP over disparate data 277

3.1.2. Distributing data and services using filesystems

Inferno distributes data and resources over networks with a protocol called Styx
(Pike and Ritchie, 1999).

At its most basic, Styx is a distributed file system protocol, describing file sys-
tems calls instead of the kernel. This allows the kernel to avoid hard-coding any file
systems calls inside the kernel itself; it just provides an interface for drivers which
speak Styx. The native filesystem, the system devices, the process table, all of these
are implemented not as part of the kernel but as optional device drivers that can be
statically linked into the kernel at compile time. These drivers can then be added to
the user–viewable namespace as necessary, by mounting the unique representation of
the device to the current namespace.

Because Styx is a protocol, not a format, the system can share any part of the
namespace transparently over a network: all that is necessary is a networked device
that can read and write the Styx protocol (e.g., Inferno or Linux machines with the
proper kernel module) and understands Inferno’s authentication mechanism. This
protocol–based approach allows local and remote devices to be handled equivalently:
any device is a file, and any file can be served over the network, meaning any device
or service can be shared transparently without the need for Remote Procedure Calls
(RPCs) like XML-RPC (Winer, n.d.) or application–specific device sharing tools, like
USB over IP (Hirofuchi et al., 2005).

One important result of this approach and especially important to the design of
Cocytus is cpu(1), a tool for distributing computation over Inferno nodes. cpu(1) does
not need a special protocol or platform to distribute computation, it just reorganizes
the user’s namespace in order to present remote computation locally. It takes local
parts of the user’s namespace, for example the keyboard, mouse, and monitor, and
merges them with those of a remote system (Cox et al., 2002), unlike ssh (Ylonen
et al., 2002) or other systems which just implement a variety of remote shell and
file transfer protocols. Because cpu(1) is a combination of namespaces and not a
protocol, commands are executed normally, by writing to the external console or via
tools that multiplex the terminal. Cocytus makes extensive use of this distributability
in distributing computation in its MapReduce implementation described in Section 6.
Figure 4 shows how Styx namespaces can be shared.

4. Development in Cocytus

Tools developed in Cocytus are easier to implement and easier to reuse in new
tools than tools developed in traditional systems. Tools developed in Cocytus com-
bine UTF-8, pipelines, and a special format for structured data, TreePaths, to pro-
vide a system where the user can implement tools for individual tools separately and
make them communicate over standard interfaces without the need for programming
language–specific integration.

278 Traitement Automatique des Langues. Volume 49 – n◦ 2/2008

Styx
namespace

./dev ./home ./bin

Styx
namespace

./mouse ./display ./keyboard

Network
connection

Figure 4. Styx namespaces can be easily shared over a network. Since namespace
interactions are a protocol rather than a facility provided by the system, as long as
there is a transport mechanism that provides two-way communication between the
host and server, it is possible for Styx namespaces to be shared transparently over a
network.

4.1. NLP Workflows

An NLP workflow is typically a process of adding annotation, a series of trans-
formations starting with raw text and resulting in linguistic data containing sufficient
information to solve a given NLP problem. For example, a morphological analyzer
transforms raw text into tokenized words with morphological information attached.
Another application, typically a dependency or syntactic parser, can then use that mor-
phological information to establish the hierarchical structure of the linguistic data, de-
scribing the relationship between words and clauses. This process of annotation con-
tinues until there is sufficient information contained in the annotation to understand
and solve some aspect of language processing, e.g., anaphora resolution, biographical
summarization, or machine translation.

Cocytus: parallel NLP over disparate data 279

However, the ease of implementation of this workflow is hampered by a variety of
issues. Text comes in different character sets; annotation is presented in different for-
mats. The process of creating NLP tools is not one of implementing tool functionality
so much as a matter of choosing, defining, or integrating different formats.

Even using common formats, communicating between applications is difficult.
NLP annotation maps well to Unix pipes, whose stream–based approach models the
staged, one-way process of adding successive layers of annotation. However, few
NLP tools take advantage of this process. Take the NLP tools Chasen (Matsumoto
et al., 1997) and Cabocha (Kudo and Matsumoto, 2002), a morphological analyzer and
dependency parser developed at Nara Institute of Science and Technology. Cabocha
uses the output of Chasen as its input for creating dependency parses, an ideal appli-
cation of pipes—the information about each sentence provided by the morphological
analyzer is used as input for the dependency parser. However, Cabocha does this by
integrating Chasen’s core into the Cabocha executable instead. The differences be-
tween Unix and Windows methods of doing interprocess communication make using
the pipeline model difficult and inconsistent across operating systems.

Cocytus, by using Inferno, eliminates this barrier to developing communicating
systems by providing common semantics across all host systems. Tools developed
in Cocytus can use of pipe–oriented development model because they will always be
equivalent no matter what the platform.

Using Cocytus, the integration of separate applications such as Chasen and
Cabocha is unnecessary. A Cocytus Chasen could just as easily output data to
Cabocha over a pipe. Integration is unnecessary. A “Software Tools” (Kernighan and
Plauger, 1976) approach, similar to the original Unix development model, becomes
the standard way of interacting with the system.

4.2. Formats for pipelining

However, even if pipes are supported uniformly on the OS level, the majority of
corpus data and other tools are not in the proper formats amenable to pipelined appli-
cations.

4.2.1. UTF-8 as a format for NLP pipelines

The character set of corpus format greatly affects the ability of that corpus to be
used in pipelined applications.

Ascii–formatted text in English, like the Penn Treebank or the British National
Corpus, works well in pipelined applications, but corpora in other languages, espe-
cially Asian languages like Japanese, have a variety of character sets capable of rep-
resenting the same kind of language.

This creates a situation where any tool that wishes to support a specific language
is forced to support a variety of different character sets within the tool itself, creating

280 Traitement Automatique des Langues. Volume 49 – n◦ 2/2008

development issues. Even worse, the character set may itself be impossible to pipeline.
For example, any character set based on a multibyte format that requires a BOM (byte
order mark) to determine its format will turn to gibberish on machines of differing
endianness when used in a stream that can begin in arbitrary locations in a file. This
is an especially big problem for systems that are meant to be used with a variety of
distributed, heterogeneous computing resources like Cocytus.

Inferno, and thereby Cocytus, solves this problem by using UTF-8. Because UTF-
8 is defined as a byte stream and covers most world languages, almost any language
can be handled natively in Inferno. In addition, UTF-8 data is represented as 16 bit
integers inside Inferno’s virtual machine, solving the efficiency problems that arise
when indexing strings of variable–width characters. These problems are traditionally
cited when arguing against the use a byte–oriented formats like UTF-8. This allows
any language on Inferno’s virtual machine to handle UTF-8 naturally (string handling
is part of DIS). Thompson (1993) details the previous issues with UTF-8 and gives
a more detailed description of the creation of UTF-8 and its use in Plan 9 and, by
extension, Inferno.

4.2.2. Data formats and structured data representation

The stream–based model of Cocytus is good for flat text strings without any de-
pendencies, but handling structured data in a stream–based format is difficult. Cocytus
solves the problem of structured data formats in streams by encoding the structure in
the data format itself, much as Unix encodes the tree structure of the Unix filesystem
in paths.

4.2.3. Traditional NLP formats

Traditionally, NLP data is formatted in recursive structures, like XML or s-
expressions. Each of these formats requires complicated parsers which have a great
deal of complexity and complicated semantics and implementations, especially facil-
ities with a potential for ambiguity like XML namespaces. In addition, these formats
are poorly suited to streaming. They require the system to keep track of the state of
the stream between lines, leading to problems similar to those that arise dealing with
wide characters without a BOM. The stream cannot start at arbitrary points, only at
specific points where the state of the entire structure can be inferred (e.g., the root of
an XML tree). Then the data must be parsed, represented, and then reencoded in the
proper representation upon output. Figure 5 shows how this incompatibility makes it
difficult to deal with traditional structured data formats using Unix tools.

4.2.4. TreePaths

To solve the problem of integrating the representation of structured data with Unix
tools, we chose TreePaths (Evans et al., 2007) as the primary structured data format
for Cocytus.

Cocytus: parallel NLP over disparate data 281

% grep ADJP <<!

((S

(NP MEI Diversified Inc.)

(VP agreed

(S (NP *)

to

(VP acquire

(NP LecTec Corp.)

(PP for

(NP (NP stock)

(ADJP currently

worth

(NP $

17.6 million))))))))

.)

!

(ADJP currently

Figure 5. Applying a Unix tool, grep(1), to an s-expression. The grep command in-
tends to extract an adjective phrase but, since the data is structured recursively, ex-
tracting the line containing the adjective phrase tag does not extract the entire phrase.

Cocytus does not rely on the recursive methods most common in current NLP
systems, using TreePaths, a format based on Unix paths, instead. TreePaths differ
from traditional methods of representing structured data in NLP systems: they are
depth–first enumerations of a tree, root to leaf, where each node is enumerated by its
position relative to its siblings. Figure 6 shows a tree path.

This structure allows TreePaths to interact with pipeline–based tools instead of be-
ing queried and edited by format–specific or specialist tools. By encoding the location
of any node in relation to the root explicitly, querying TreePath annotations becomes a
matter of string matching, not parsing a recursive format. Subtree extractions based on
data from parent nodes, i.e., extracting a subtree based on its parent node, can be done
with one invocation of grep(1). Extractions based on the position or type of a child
node in relation to its siblings can be done with two calls to grep(1) (one to get the
child node, and one to extract all of its siblings). Finally, horizontal searches like the
type provided by more recent languages such as LPath (Bird et al., 2004) can be done
using a simple stack–based extraction: use a stack to keep previous nodes, then, when
two nodes satisfying the relationship are found, pop the stack. In–depth examples and
a further explanation of TreePaths are described in Evans et al. (2007).

282 Traitement Automatique des Langues. Volume 49 – n◦ 2/2008

/1.S/1.NP/1.Continental
/1.S/1.NP/2.Airlines
/1.S/2.VP/1.is
/1.S/2.VP/2.NP/1.a
/1.S/2.VP/2.NP/2.unit
/1.S/2.VP/2.NP/3.PP/1.of
/1.S/2.VP/2.NP/3.PP/2.NP/1.NP/1.Texas
/1.S/2.VP/2.NP/3.PP/2.NP/1.NP/2.Air
/1.S/2.VP/2.NP/3.PP/2.NP/1.NP/3.Corp.
/1.S/2.VP/2.NP/3.PP/2.NP/2.,
/1.S/2.VP/2.NP/3.PP/2.NP/3.NP/1.Houston

Figure 6. The context of a TreePath is encoded in the data structure itself like a Unix
path. By encoding a depth–first enumeration from node to leaf in each line of the
representation, vertical queries, subtree extraction, and editing become a matter of
string matching. By pushing the lines of a TreePath onto a stack or doing two–pass
processing, it becomes possible to do horizontal node querying as well.

5. Data Representation

Even though Cocytus specifies a stream model, adhering to this model can be
difficult for NLP researchers. Corpora come in different formats, many of which are
cumbersome or incompatible with stream approaches.

This incompatibility compels any tool designer who wants to support a combina-
tion of these different formats to integrate support for these data formats into the tool
itself. This requires constant reimplementation of format support when tool imple-
menters attempt to write tools in an unsupported programming language or develop a
new tool with a different interface.

Cocytus solves this representation problem by using namespaces to provide a uni-
fied view of disparate resources. This solution is based on the observation that, be-
cause Inferno namespaces are synthetic, they do not represent physical files or re-
sources, just a server that responds to the Styx protocol, so developers can create new
namespaces by implementing a Styx server to interact with an already existing re-
source. New namespaces can then be integrated into the current namespace in the
same way as any other device.

The best example of this style of problem solving is trfs(4)4, a tool for handling
spaces in the host operating system’s filenames in Inferno (Inferno considers spaces
a token delimiter in file names). trfs(4) takes an existing resource, a host OS names-

4. See http://groups.google.com/group/comp.os.plan9/browse_thread/

thread/ec0a67f915b27887/cf0151e48598d25e?hl=en&lnk=st&q=trfs+nemo#

cf0151e48598d25ei for a discussion and the source code for trfs.

http://groups.google.com/group/comp.os.plan9/browse_thread/thread/ec0a67f915b27887/cf0151e48598d25e?hl=en&lnk=st&q=trfs+nemo#cf0151e48598d25ei
http://groups.google.com/group/comp.os.plan9/browse_thread/thread/ec0a67f915b27887/cf0151e48598d25e?hl=en&lnk=st&q=trfs+nemo#cf0151e48598d25ei
http://groups.google.com/group/comp.os.plan9/browse_thread/thread/ec0a67f915b27887/cf0151e48598d25e?hl=en&lnk=st&q=trfs+nemo#cf0151e48598d25ei

Cocytus: parallel NLP over disparate data 283

pace, and applies a transformation to it, converting their filenames to contain another
character instead of spaces when their parent directories are read.

Using trfs as a model, we have developed a way of presenting disparate linguistic
resources in a single, standard way. This technique relies on namespace transfor-
mations that take a variety of resources, different character sets, and structured data
formats, and convert them to Cocytus’ native formats. The system takes a set of lin-
guistic resources in a file system and creates a new namespace using the resource
filesystem as a guide, duplicating the names and the directory hierarchy of the files in
a resource.

This approach allows developers to ignore the issues that arise from implement-
ing support for various formats. By providing an alternative representation of differ-
ent resources in Cocytus’ native formats, foreign format support by user programs
is unnecessary, and resources appear automatically in the standard format. Once the
implementer chooses the standard data format, the system itself manages the support-
ing other formats, eliminating any need for programmers and users to handle other
formats manually.

This format handling system is implemented as a series of namespace servers
which take a previous namespace, the original or intermediate namespaces and per-
form a predefined transformation on the chosen namespace. In this manner, it is pos-
sible to perform a series of transformations on a namespace, with each intermediary
namespace applying successive transformations, finally terminating in the desired for-
mat. Figure 7 shows an overview of the process.

5.1. utfs and tpfs

Currently Cocytus has two file modules, utfs and tpfs, to do conversions. The exe-
cutables are actually wrappers around tmfs, calling the module and passing command
line arguments to the system itself. The modules are then included in a fileserver tmfs
which applies the module’s transformation functions to the file system calls. These
tools are described in greater depth in Evans (2007).

5.1.1. tmfs

Cocytus’ conversion system is constructed around a central program, tmfs. tmfs is
a namespace transformer, that takes the representation of a resource in one namespace,
e.g., a text file or annotated data, and transforms how that representation is depicted.
tmfs has the ability to change the name, contents, and hierarchy of any given names-
pace. Changes can be transparent in both directions, reading converting to a standard
format and writing converting back to the original format.

This gives the conversion system the ability to take resources that are presented in
two different but regular ways, for example, systems with different character sets or

284 Traitement Automatique des Langues. Volume 49 – n◦ 2/2008

L1:

FS:

L2:
The Cocytus tranformation

pipeline. The underlying
namespace containing a

variety of disparate data, file
containing data in xml, s-

expressions and formatted
in shift jis euc-jp and

iso2022, is converted to
common data in stages. First
utfs converts the contents
of the namespace files to

utf8 when the files are read
and written. Then the

resulting data goes through
the tpfs intermeidiate

namespace which converts
the various types of
structured data to

TreePaths. This gives the
user a completely

transparent view of the
differing resources. Even
though the data is in a

variety of formats the user
only sees and has to

develop tools for one type.

Original namespace

./sijissexp ./eucjpxml ./iso2022sexp

utfs

Intermediate namespace

./utf8sexp ./utfs8xml ./utf8sexp

Final namespace

./utf8tp ./utf8tp ./utf8tp

tpfs

Figure 7. tpfs and utfs allow the system to present all linguistic resources available
to the researcher in standardized formats. utfs takes the original namespace, detects
the character set of its files, and applies a conversion filter to convert the character
set of the original files to UTF-8 when they are read or written. This intermediate
transformed namespace is then transformed again, this time using tpfs, which uses a
frequency heuristic to determine the structured data type. tpfs then parses the struc-
tured data and converts it to TreePaths, Cocytus’ native structured data format. The
final namespace that results from both of these transformations represents all of the
available resources uniformly as UTF-8 and TreePaths.

differing types of structured data, and change the representation of those resources to
a common format.

Cocytus: parallel NLP over disparate data 285

tmfs performs these conversions by acting as a Styx transformer. It takes Styx calls
from a namespace and then applies a specified function to the call. This is analogous
to the Unix process of stream editing, sending data over a pipe, applying a transfor-
mation and then using the output for different purposes. The Unix awk(1) and sed(1)
commands are commonly used for stream editing.

However, tmfs does not define the transformations itself; it defines the interface
to a transformation module instead. The user, or more often the system administrator,
provides an external module that provides the relevant transformations. These trans-
formation modules form the basis of resource representation in Cocytus, allowing it
to provide a uniform representation of disparate resources. Currently the system con-
tains two modules, utfs and tpfs, to provide common representations of character sets
and structured data.

5.1.2. utfs

utfs is a module for tmfs, intended to take a variety of character sets and convert
them to UTF-8 when a namespace containing files with non-UTF-8 character sets
is read and written. It does this by caching reads and writes and then recognizing
the character set of the original file using an Inferno port of the Mozilla character
set detection algorithm (Li and Momoi, 2001). Once the character set is detected,
it applies one of Inferno’s tcs(1) suite of character conversion modules and converts
character sets to the proper types.

5.1.3. tpfs

tpfs takes a namespace containing structured data formats, currently XML and s-
expressions, and expresses them as TreePaths. tpfs does this by treating all files as text
files and then using the frequency distribution of characters in the files to determine
their format. Once the format is determined when the files are read and written, the
data is parsed into a cache and converted. This caching is necessary because TreePaths
require shorter reads (TreePath nodes are self-contained) compared to other formats.
Only when structured data is completely parsed and converted can it be made avail-
able, hence the need for caching.

6. Maximizing computation

Cocytus’ development model and way of representing resources provide the com-
mon foundation Cocytus uses to maximize the computing resources available to an
institution.

By maintaining data in a common format that is processed identically regardless of
architecture, operating system, and data format, all of the resources of a research lab,
lab machines of varying architectures (e.g. Sparc, 386, and PPC), operating systems
(Mac, Solaris, Windows, Linux), and corpora in different languages can all be used as
part of a Cocytus installation in a unified way.

286 Traitement Automatique des Langues. Volume 49 – n◦ 2/2008

Using this unified model of resource representation, we have developed a sub-
system of Cocytus that handles process distribution, parallelizing NLP computations
transparently. This system uses a MapReduce implementation built on top of the
shell to distribute computation. Because the smallest unit of Cocytus is a pipelined
program, not a module, Cocytus’ MapReduce implementation distributes traditional
Inferno (Unix) commands instead of distributing modules, thus allowing any user pro-
gram to be parallelized, so long as it follows the Cocytus pipeline model. This process
differs from traditional MapReduce systems which use modules or objects in a lan-
guage like C++ or Java to set up computation (Bialecki et al., n.d.).

Using the shell to distribute processes gives Cocytus an advantage over traditional
MapReduce systems. Modules do not have to be written for MapReduce specifically,
traditional Unix tools can be used as mappers and reducers, eliminating the need to
create specific tools. Instead of parallelizing objects or modules, we are parallelizing
shell commands. This is what gives Cocytus its development model. Users can de-
velop tools using toy data quickly, then once the solution is deemed sufficient it can be
distributed over large datasets. This helps groups with limited resources avoid wasting
resources on potentially mistaken results—the tools used in the MapReduce have been
debugged already. Figure 8 gives an overview of Cocytus’ process distribution.

6.1. Performance

NLP tools are typically evaluated by their processing–time efficiency. The goal
of any system is to return the user’s desired output in the shortest amount of time
possible. The same is true of NLP platforms.

In theory, Cocytus’ method of doing NLP problem–solving, using un-optimized,
stream–oriented processing of NLP data, makes Cocytus slower than other NLP sys-
tems which are more heavily optimized for specific problem domains. In practice,
we expect that this lack of performance is inconsequential using Cocytus’ develop-
ment model. Tools are developed using small datasets which —even using linear,
text–based methods— are sufficiently responsive to user input. In the case of large
datasets, Cocytus performs better than optimized methods: Cocytus’ line–oriented IO
model and its ease of distributing computation using namespaces allows Cocytus to
overcome its slowness using brute force methods.

With these expectations in mind, we tested the system, extracting noun phrases
using the following resources. We compared the system against a common optimized
querying tool, tgrep2 (Rohde, 2004) and, because we do not have a high–performance
Lpath querying system5, we extrapolated the speed of Lpath based on Bird et al.
(2004)’s results compared to tgrep2.

5. An Lpath implementation exists for NLTK (Loper and Bird, 2002), a system for teaching
NLP programming, but it is not optimized for performance, so it was not measured here.

Cocytus: parallel NLP over disparate data 287

Cocytus parallelizes
computation using Google’s
MapReduce algorithm. Using

Inferno’s namespace
oriented architecture the
process is done using a

combination of shell
commands. The process is

determined on the host and
then sent to the other

machines.

Map

Input
Output

huge data

Map

Map

Map

Reduce

Reduce

Reduce

Reduce

Map

Map

Map

Map

mapred {tr -cz A-Za-z \0180 | os awk ‘{print last “ ”$1; last=$1}} {grep ‘go to’} | wc -l

Figure 8. Cocytus’ MapReduce system is built on top of the shell. It has a special
command for aggregating and distributing data. Process distribution, both maps and
reduces are handled transparently using Inferno’s cpu(1) command, which sends the
proper shell command and options to the remote machine. Output is sent to the user’s
standard output. If the user chooses to, they can redirect the output from the shell.

We tested the data on the PennTreebank, represented as tgrep2’s special index and
TreePaths respectively. The indexed version took place on a Sun Fire V1280 server
with 96 gigabytes of RAM and a 64 node grid of dual processor 1.8ghz AMD Opteron
servers with 2 gigabytes of RAM each to test Cocytus.

The table is logarithmic, comparing doubling of data size with the corresponding
logarithmic scale measure of cpu time. Figure 9 shows the results for a variety of
queries. Because there is not enough Penn Treebank data to compare to truly huge
data–sets, the Penn Treebank was concatenated onto itself. The X axis scale based
on n is the number of complete sets of the Penn Treebank searched. Figure 10 shows
these results.

288 Traitement Automatique des Langues. Volume 49 – n◦ 2/2008

0

2.5

5.0

7.5

10.0

2 4 8 16 32

tgrep2 Lpath Cocytus

Figure 9. Cocytus’ performance. Cocytus, by virtue of its being able to distribute NLP
computations transparently, remains competitive with other NLP systems, despite its
simplicity and lack of optimization.

6.2. Programmer efficiency

As well as measuring computational efficiency, another important measure of the
success of Cocytus is the extent it simplifies the NLP tool development process by
eliminating code that would have been written to support different datasets and opti-
mize efficiency.

In many cases using Cocytus eliminates the need to write new NLP tools at
all. Querying can be done with creative uses of grep(1), simple tokenization and
concordancing can be done with creative combinations of tr(1), sort(1) and uniq(1)
(Church, 1994)

However, in fairness to other systems and their tools, we took the main tool used
for querying and extracting in Cocytus, grep(1), and compared its length in lines of
code to two other tools, tgrep2(1) and Chasen. While Chasen may seem an odd choice,
—a morphological analyzer compared to two extraction tools, Chasen is relevant to the
current comparison because roughly 1/6 of Chasen is devoted to Japanese character
set handling.

Cocytus: parallel NLP over disparate data 289

Figure 10 shows a comparision between tgrep2, Inferno’s grep and Chasen’s char-
acter set handling code (Chasen itself is 4971 lines of C code). The code metric was
measured using c_count(1)6.

The relative size of each tool is instructive. If Cocytus had tried to mimic the
development models for NLP tools, the developer of grep(1) would have had to write
more than twice as much code just to support Japanese character sets. Cocytus, by
moving character set handling to the systems level, avoids these problems. This makes
developing for Cocytus less effort than traditional tool development.

Even more instructive is Cocytus’ relation to tgrep2(1). While both tools can do
ostensibly the same thing, vertically query and extract subtrees from a set of annotated
data, tgrep2(1) is an order of magnitude larger than grep(1). Most of this code has to
do with supporting tgrep2(1)’s special index format and querying that format. By ad-
hering to a simple format and using brute force parallelization over unused resources,
Cocytus can achieve the same speeds with > 1/10 of the code complexity. The results
are described in Figure 10.

0

750

1,500

2,250

3,000

Inferno grep Chasen character set handling tgrep2

Lines of Code

Figure 10. Amount of code in various tools.

6. Available at http://invisible-island.net/c_count/c_count.html.

http://invisible-island.net/c_count/c_count.html

290 Traitement Automatique des Langues. Volume 49 – n◦ 2/2008

7. Discussion

Cocytus takes a completely different approach to developing an NLP platform.
Instead of developing an application on top of the system and being forced to rely on
the idiosyncracies of that system, we implemented the system on a hosted operating
system. That allowed us to avoid many of the problems that plague other systems, like
inconsistent resource formats and system behavior.

By putting the responsibility for standardizing resource presentation in the system,
we can provide the user with a much more flexible way of interacting with the system.
Users are free to create their own patterns from small tools using a persistent interface
that is more intuitive and flexible than traditional shells and giving access to com-
mands. In fact, it is not readily obvious to Cocytus users that they are using an NLP
platform. The system takes care of the busy work that typically has to be implemented
manually.

Free of the implementation overhead that normally hinders the development of
NLP tools, institutions can concentrate on developing novel NLP tools and solutions.
Previously underutilized systems, lab computers, or researcher workstations can then
be repurposed as Cocytus nodes because of the portability and common interface it
provides as a hosted operating system.

The key to Cocytus’ functionality is namespaces. The ability to represent resources
dynamically allows Cocytus to deal with a variety of different resources simply using a
common interface. We do not have to develop new protocols or parsers to implement
tools on Coctytus. Just by standardizing on two useful abstractions, TreePaths and
UTF-8, and transforming namespaces that do not adhere to these standards, we can
handle a variety of languages and data formats while relying on a single interface
and method of interacting with the system, Unix-style tools. Namespaces also give
us distributed computation “for fre” because computational resources themselves are
namespaces that can be imported and used by remote systems.

This approach is significantly different from current approaches. Cocytus requires
a different mindset and creativity to use effectively. This can be disconcerting for
users expecting a traditional system. In essence, the system rewards user mastery at
the expense of beginning users, a symptom of many systems. A set of tutorials and
screencasts are under development to correct this problem.

As the system improves and matures, we expect it to become more of a foundation
for lab’s research, enabling researchers to use the system to develop tools that allow
NLP work to be done more quickly.

8. Future Work

Cocytus is still in its infancy, so there are many potential paths it can take. We
consider the following to be especially promising.

Cocytus: parallel NLP over disparate data 291

Inferno and its predecessor Plan 9 are both popular operating systems in High
Performance Computing (HPC): a version of Cocytus to take advantage of larger HPC
systems would be an interesting way of exploring the potentials and limitations of the
platform.

Also, automatic character detection can be ambiguous and difficult for small sam-
ple sizes. This can be a problem, especially in places where the advantages of Cocytus
are most evident, like large unstructured datasets. A way of dealing with this detection
problem effectively would help Cocytus in dealing with web datasets.

The current namespace layering is unwieldy. Changing the system to have the
transformation system work according to modules similar to Unix’s streams IO
systems(Ritchie, 1984) might be a better alternative. A new version, with a language
for dynamically adding and removing transforms to a namespace, is currently being
considered.

The sorting phase of the MapReduce sorts TreePaths but does not sort according to
language order. Although natural sorting has many well–known problems (especially
for languages where the pronunciation depends on context), combining morphological
analysis (extracting the pronunciations) in the Map phase with an intelligent sort could
have useful applications in dealing with multilingual language processing.

Currently Cocytus does not have a standard set of NLP tools, like morphological
analyzers or syntax parsers. Cocytus relies on calling these commands from the under-
lying operating system. This defeats the central goal of Cocytus, hiding differences in
operating systems and resources. A complete NLP toolchain for Cocytus, supporting
a variety of languages, will make it more productive.

To take better advantage of Cocytus’ pipelining, we are planning to implement a
few tools, including a modular port of awk(1) to Inferno. This will allow the easy
implementation of tools that fall between the boundary of the shell and Limbo. The
shell is good for small tasks but lacks the ease of floating point handling and the terse
syntax of awk for record–based IO. Limbo provides a richer set of tools but lacks
the niceties of awk, native support for regular expressions, and a standard method of
interacting with data–driven input.

Finally, the added information contained in TreePaths can cause congestion when
Cocytus nodes are linked with slow connections. In order to solve this performance
problem, an optional module to compress TreePaths using Woods (1983) is planned.

9. References

Bialecki A., Cafarella M., Cutting D., O Malley O., “Hadoop: a framework for running appli-
cations on large clusters built of commodity hardware, 2005”, Wiki at http://lucene. apache.
org/hadoop, n.d.

Bird S., Chen Y., Davidson S., Lee H., Zheng Y., “LPath: A path language for linguistic trees”,
, Unpublished manuscript, 2004.

292 Traitement Automatique des Langues. Volume 49 – n◦ 2/2008

Church K., “Unix for Poets”, Notes of a course from the European Summer School on Language
and Speech Communication, Corpus Based Methods, 1994.

Cox R., Grosse E., Pike R., Presotto D., Quinlan S., “Security in Plan 9”, Proceedings of the
11th USENIX Security Symposium table of contents, USENIX Association Berkeley, CA,
USA, p. 3-16, 2002.

Cunningham H., Gaizauskas R., Wilks Y., “A General Architecture for Text Engineering
(GATE)—a new approach to Language Engineering R&D”, Research Memo. University
of Sheffield, 1995.

Dean J., Ghemawat S., “MapReduce: Simplified Data Processing on Large Clusters”, Commu-
nications of the ACM, vol. 51, n˚ 01, p. 7, 2008.

Dorward S., Pike R., Presotto D., Ritchie D., Trickey H., Winterbottom P., “The Inferno Oper-
ating System”, Bell Labs Technical Journal, vol. 2, n˚ 1, p. 5-18, 1997.

Evans N., “Representing disparate resources by layering namespaces”, Second International
Workshop for Plan Proceedings, 2007.

Evans N., Asahara M., Matsumoto Y., “Trees as paths: lessons from file systems and Unix in
dealing with language trees”, IPSJ Technical Report, 2007.

Ferrucci D., Lally A., “UIMA: an architectural approach to unstructured information processing
in the corporate research environment”, Natural Language Engineering, vol. 10, n˚ 3-4,
p. 327-348, 2004.

Hirofuchi T., Kawai E., Fujikawa K., Sunahara H., “USB/IP: A Transparent Device Sharing
Technology over IP Network”, Transactions of Information Processing Society of Japan,
vol. 46, p. 349-361, 2005.

Kernighan B., Plauger P., “Software tools”, ACM SIGSOFT Software Engineering Notes, vol.
1, n˚ 1, p. 15-20, 1976.

Kudo T., Matsumoto Y., “Japanese dependency analysis using cascaded chunking”, Interna-
tional Conference On Computational Linguistics, vol. 1, p. 1-7, 2002.

Li S., Momoi K., “A composite approach to language/encoding detection”, Proc. 19th Interna-
tional Unicode Conference, 2001.

Loper E., Bird S., “NLTK: the Natural Language Toolkit”, Proceedings of the ACL-02 Work-
shop on Effective tools and methodologies for teaching natural language processing and
computational linguistics, vol. 1, p. 63-70, 2002.

Matsumoto Y., Kitauchi A., Yamashita T., Hirano Y., Imaichi O., Imamura T., “Japanese mor-
phological analysis system ChaSen manual”, Nara Institute of Science and Technology
Technical Report NAIST-IS-TR, vol. 97007, p. 232-237, 1997.

Pantel P., “Data Catalysis: Facilitating Large-Scale Natural Language Data Processing”, n.d.

Pike R., Presotto D., Thompson K., Trickey H., “Plan 9 from Bell Labs”, Computing Systems,
vol. 8, n˚ 3, p. 221-254, 1995.

Pike R., Ritchie D., “Styx architecture for distributed systems”, Bell Labs Technical Journal,
vol. 4, n˚ 2, p. 146-152, 1999.

Ritchie D., “A stream input-output system”, AT&T Bell Laboratories Technical Journal, vol.
63, n˚ 8, p. 1897-1910, 1984.

Ritchie D., “The Limbo Programming Language”, Inferno 3rd Edition Programmers Manual,
n.d.

Rohde D., “TGrep2 User Manual”, 2004.

Cocytus: parallel NLP over disparate data 293

Thompson K., “UNIX Implementation”, The Bell System Technical Journal, vol. 57, n˚ 6,
p. 1931-1946, 1978.

Thompson K., “Hello World”, Proceedings of the Winter 1993 USENIX Conference, vol. 1,
p. 43-50, 1993.

Winer D., “XML-RPC Specification, 1999”, URL http://www. xmlrpc. com/spec, n.d.

Winterbottom P., Pike R., “The design of the Inferno virtual machine”, Hot Chips, n.d.

Woods J. A., Finding Files Fast, Technical Report n˚ UCB/CSD-83-148, EECS Department,
University of California, Berkeley, January, 1983.

Ylonen T., Kivinen T., Saarinen M., Rinne T., Lehtinen S., “SSH Protocol Architecture”, 2002.

	Motivation
	Cocytus: a NLP framework based on Inferno
	Foundations
	Inferno
	Namespaces
	Distributing data and services using filesystems

	Development in Cocytus
	NLP Workflows
	Formats for pipelining
	UTF-8 as a format for NLP pipelines
	Data formats and structured data representation
	Traditional NLP formats
	TreePaths

	Data Representation
	utfs and tpfs
	tmfs
	utfs
	tpfs

	Maximizing computation
	Performance
	Programmer efficiency

	Discussion
	Future Work
	References

