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ABSTRACT. Over the last few years there has been substantial research on text summarization, but
comparatively little research has been carried out on adaptable components that allow rapid
development and evaluation of summarization solutions. This paper presents a set of adaptable
summarization components together with well-established evaluation tools, all within the GATE
paradigm. The toolkit includes resources for the computation of summarization features which
are combined in order to provide functionalities for single-document, multi-document, query-
based, and multi/cross-lingual summarization. The summarization tools have been successfully
used in a number of applications including a fully-fledged information access system.

RÉSUMÉ. Au cours des dernières années il y a eu un nombre important de recherches au su-
jet du résumé automatique. Toutefois, il y a eu comparativement peu de recherche au sujet
des ressources computationnelles et composantes qui peuvent être adaptées facilement pour le
développement et l’évaluation des systèmes de résumé automatique. Ici on présente un ensem-
ble de ressources spécifiquement développées pour le résumé automatique qui se basent sur la
plateforme GATE. Les composantes sont utilisées pour calculer des traits indiquant la perti-
nence des phrases. Ces composantes sont combinées pour produire différents types de systèmes
de résumé tels que résumé de document simple, résumé de document multiple, et résumé basé
sur des topiques. Les ressources et algorithmes implémentés ont été utilisés pour développer
plusieurs applications pour l’accès à l’information dans des systèmes d’information.
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1. Introduction

Text summarization is an information access technology which, given a document
or set of related documents, extracts the most important content from the sources
and presents it in a well-formed and concise textual form. The ever-increasing avail-
ability of on-line textual databases and the development of the Web require effective
tools and resources to assist humans in the creation of summaries and other types of
document surrogates in order to facilitate information access. Recent years have wit-
nessed many advances in information technology; however, summarization is still a
field where significant improvements are required. For example, although automatic
systems are outperforming simple baselines, their performance is still behind that of
humans (Over et al., 2007). Many summarization solutions have been produced in
the long history of the field, from the seminal work of Luhn (Luhn, 1958) and Ed-
mundson (Edmundson, 1969) to the recent advances presented in the special issue of
Information Processing & Management on text summarization (Harman, 2007). To
the best of our knowledge, very little research has been carried out on the construction
of a standard set of tools universally available which can be used for creating or cus-
tomizing summarization systems, carrying out experiments, and evaluating different
possible configurations. Such a toolkit would ensure replicability, comparison of re-
sults, and sharing of language and processing resources across laboratories. The only
exception to this has been the MEAD system (Radev et al., 2004). In most cases, re-
search on tools and software for natural language processing (NLP) has concentrated
on tasks other than text summarization (see, for example, a recent issue of the Natural
Language Engineering journal (Cunningham and Scott, 2004)).

Sets of tools and platforms for NLP have been produced and are well docu-
mented, notably the General Architecture for Text Engineering, the GATE platform
(Cunningham et al., 2002), which has been used in many natural language process-
ing tasks, notably information extraction. However, GATE in itself does not provide
modules for text summarization or its rather idiosyncratic evaluation methods. In this
paper we describe our experience in the creation of a set of standard summarization
tools – the SUMMA toolkit – under the GATE platform. We also describe practical
applications developed with the toolkit, but the focus of the paper is on the toolkit it-
self. Because the implementation of SUMMA is based on GATE, many functionalities
are inherited and resources reused to create fully-fledged summarization applications.
There are many advantages in having a set of summarization components integrated
in the GATE platform, including rapid development or testing of research ideas, eval-
uation, replicability of results, education, and training.

This article is structured as follows: first, in Section 2, we give a brief overview of
automatic text summarization. This is followed in Section 3 by a very brief descrip-
tion of the GATE platform and the implementation of the SUMMA toolkit as a set of
GATE components. Section 4 overviews summarization evaluation, and Section 5 de-
scribes the SUMMA content-based evaluation framework. In Section 6 we show how
summarization systems can be trained using the GATE and SUMMA tools, while in
Section 7 we describe a number of real applications developed with the tool. In Sec-
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tion 8 we present related work, and Section 9 closes with conclusions and prospects
for further work.

2. Automatic Text Summarization

According to Mani (2001), the goal of automatic summarization is to take an infor-
mation source, extract content from it, and present the most important content to the
system’s user in a condensed form which is sensitive to the user’s task. There are two
main problems in text summarization: one is the problem of selecting the most rele-
vant information from a source document or documents, the second is how to express
that key information in the final summary. A compression parameter is usually speci-
fied as part of the process. This can be an absolute number of words to be produced or
a percentage of the original text. Sometimes the task of content selection is too open
(e.g., “select the most important content of the document”) and may hinder the de-
velopment of satisfactory summarization solutions. Usually selection of information
depends not only on the document to be summarized but also on contextual factors
such as the audience (e.g., does the reader need background information?) or the
tasks the user/reader has to carry out with the summary (e.g., indexing, classification,
question answering). When minimal requirements are specified in a summarization
task (e.g., summarize this document in 200 words), we talk about generic summariza-
tion, meaning that the perspective of the author of the document would be taken into
account when deciding on what content to select from the source.

Most attention has been paid to the problem of what to extract from the source
document; however, research also has been carried out on how to create well-formed
summaries.

Approaches to the first problem have tried to come up with a list of relevant fea-
tures that are believed to indicate the relevance of a sentence in a document or set of
documents (see Mani (2001)). These features can be used alone or in combination
to produce sentence (or paragraph) relevance scores which in turn are used to rank
sentences/paragraphs and select the top-ranked ones (up to a certain compression) as
the resulting summary content (e.g., an extract). For example, in cases where features
are used to learn a selection function, the scoring is some sort of probability which in-
dicates the likelihood that the sentence belongs to a summary. Various interpretations
exist of how to compute the features.

The simplest strategy for presenting the summary is a concatenation strategy which
outputs the selected sentences in order of occurrence in the document. In multi-
document summarization settings particular attention has to be paid to the way in
which information is to be presented (Barzilay et al., 2001; Lapata, 2003). The gen-
eration of extracts has the obvious disadvantages of producing fragmentary texts ex-
hibiting problems of cohesion and coherence (Paice, 1990), but there are no robust
and generic solutions to produce non-extractive multi-sentence summaries from open-
domain texts.



106 Traitement Automatique des Langues. Volume 49 – n◦ 2/2008

Some features investigated in the literature include the use of frequency informa-
tion (term frequency or tf) combined with inverted term frequency (or idf) from corpus
statistics. This implements the idea that the more frequent a term is in a document –
and at the same time more discriminative – the more relevant it is and as a consequence
it is worth selecting sentences containing the term (Luhn, 1958).

The position of a sentence in the document has also informed content selection
strategies (Edmundson, 1969; Lin and Hovy, 1997). News wire and similar texts have
a pyramidal discourse structure where relevant/new information (the key events) is
usually expressed in the leading paragraph, and therefore sentences from the leading
paragraph are considered relevant. In scientific papers, sections such as the intro-
duction and the conclusion report on the objectives and findings of the research, so
sentences contained in those sections can be considered as important.

Because titles of articles, especially scientific ones, sometimes state the theme or
subject dealt with in the article, one may consider that sentences containing terms
from the title are relevant for a summary (Edmundson, 1969).

The presence of specific formulaic expressions, especially in the scientific and
legal domains, has also been considered a useful cue to find information relevant for
a summary (Paice, 1981). Formulaic expressions such as “This paper presents,” “Our
results indicate,” “We conclude that” are used by paper authors to explicitly introduce
key information. In fact, this is also a strategy used by professional abstractors to
produce abstracts, a fact acknowledged in abstract writing studies (Cremmins, 1982;
Endres-Niggemeyer et al., 1995).

In the context of creating a summary of multiple documents, one feature usually
exploited, and proven to work well, is the proximity in content of a sentence to the
centroid of the set of documents to be summarized (Radev et al., 2000; Saggion and
Gaizauskas, 2004), which is a set of words in a cluster of documents considered sta-
tistically important.

These are only a few of the indicators which may be used by a summarization
algorithm in the selection of sentences or passages for a summary; these features
together with new functionalities have been implemented in the SUMMA toolkit (a
full list of resources is given in the Appendix). They are continuously used by the
research community and thus they seem to be necessary in order to create baselines
and explore new research ideas. These are simple to compute, reliable, and have
been the focus of attention of a number of studies in human summarization (Endres-
Niggemeyer, 2000).

3. SUMMA Implementation

The components have been developed at the NLP Group in the University of
Sheffield and are implemented as a set of GATE processing and language re-
sources (i.e., algorithms and data). The first set of components was described in
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(Saggion, 2002), and since then the tool has been transformed to cope with new sum-
marization challenges and to address real summarization tasks, as will be described
later.

3.1. GATE

The GATE platform is a framework for the development and deployment of lan-
guage processing technology on a large scale (Cunningham et al., 2002) and in recent
years has been extended to cope with new challenges posed by the information society,
notably semantic access to information (Bontcheva et al., 2004). The GATE architec-
ture is based on components, reusable pieces of software that may be deployed in
a variety of contexts. GATE components may be implemented by a variety of pro-
gramming languages, but they are all represented as Java classes. GATE provides
three types of resources: Language Resources (LRs), which collectively refer to data;
Processing Resources (PRs), which refer to algorithms; and Visualisation Resources
(VRs), which represent visualization and editing components. The set of resources
integrated with GATE is known as CREOLE: a Collection of REusable Objects for
Language Engineering. A creole.xml file contains the specification of each of the
resources available to GATE in a given plug-in.

GATE can be used to process documents in different formats including plain text,
HTML, XML, RTF, and SGML. The documents in GATE are language resources that
contain text and one or more annotation sets which are used to encode different types
of information. Another language resource is a GATE corpus, which is a set of GATE
documents. In order to create applications in GATE or in a program that uses the
GATE library, one has to combine processing resources into an application. There
are two ways to do this in GATE. An application can be created using a pipeline that
groups processing resources together and executes them in sequence. Another way to
create an application is by using a corpus pipeline, which also groups a set of resources
together, but runs over a corpus. A corpus pipeline iterates over each document in the
corpus, applying each processing resource in turn.

Document annotations are generally created and/or updated by PRs during text
processing (e.g., application execution). Each annotation belongs to an annotation set
and has a type, a pair of offsets (the span of text one wants to annotate), and a set
of features and values that are used to encode various types of information. Features
(or attribute names) are generally strings. Attributes and values can be specified in an
annotation schema, which facilitates validation and input during manual annotation.
Programmatic access to the annotation sets, annotations, features, and values is pos-
sible through the GATE Application Program Interface (API). Some typical compo-
nents of GATE are a tokenizer (which produces token annotations), a sentence splitter
(which produces sentence annotations), a part-of-speech tagger (which adds a part of
speech tag to each token), and a named entity recognition module (which identifies
different types of named entities and creates annotations for each type). Most native
GATE components are exploited in one form or another in the SUMMA package.
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3.2. SUMMA Toolkit

The summarization toolkit uses some of the default GATE components and also
uses GATE language resources to store computed values. Algorithms for the com-
putation of summarization features and evaluation methods have been implemented
as GATE processing resources, and therefore methods for initialization and execution
over corpora have been implemented. Processing resources in SUMMA have param-
eters that can be modified by the user (e.g., summary compression, scoring values,
features to be combined).

Language resources are also used, notably in the creation of sentence extracts. The
system uses an annotation set to indicate (as annotations) the sentences selected for a
summary, and if required creates a stand-alone GATE document to store the extracted
text; in the case of multidocument summarization a multidocument summary is also
created as a GATE document.

The sentence annotations produced by the GATE sentence splitter are used to store
values computed by SUMMA and can be exported for use in statistical or symbolic
learning.

Annotation sets containing the extract can be exported to a repository on disk for
further use or can be exported together with the GATE documents in order to pro-
duce highlighted texts. Summarization components can be combined by the user to
produce an application (pipeline or corpus pipeline of processing resources). There-
fore, the tool provides an easy way for the development, testing, and deployment of
customizable summarization solutions. The resources are specified in a CREOLE file
so that they can be created, combined, and executed in GATE as any other resource.
Because SUMMA uses language resources from GATE, visualization of results is
possible within GATE.

Processing resources compute numerical features for each sentence in the input
document, which indicate how relevant the information in the sentence is for the fea-
ture. The computed values are combined – using a specific processing resource – in
a linear formula to obtain a score for each sentence, which is used as the basis for
sentence selection. The formula can be edited by the user in a flexible way: features
can be removed or added and weights can be adjusted. Sentences are ranked based
on their score and top-ranked sentences selected to produce an extract, i.e., annotated
in an annotation set; if specified, a GATE document containing the summary is also
created. The SUMMA tool can be used in the GATE user interface or standalone by
importing in a Java program the SUMMA class library.

The features can also be used in order to train a sentence classification program and
the trained system used to produce summaries for unseen documents (this is detailed
below).

An example summary obtained with the tool can be seen in Figure 1. The Figure
shows the GATE graphical user interface, where a number of documents (left-hand
side of the figure) have been analyzed by SUMMA components. One of the documents
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Figure 1. GATE GUI showing extract computed by SUMMA

is being displayed in the GATE GUI. The text of the document (top middle panel)
has a number of sentences which have been highlighted or annotated as summary
sentences. The score associated to each of the annotated sentences can be seen in the
bottom middle panel: the score is represented by the feature ’score=...’. The annotated
sentences (which are called ’Summary’) are GATE annotations which are stored in an
annotation set called ’EXTRACT’ (see right-hand side panel).

These sentences can be exported to a text file using a component provided with the
summarization toolkit.

A corpus statistic module computes token statistics including term frequency – the
number of times each term occurs in the document (tf). Token statistics are stored
in the token annotations produced by the GATE tokenizer. The vector space model
(Salton, 1988) has been implemented and is used to create vector representations of
different text fragments – usually sentences but also the full document. Each vector
contains, for each term occurring in the text fragment, the value tf*idf (term frequency
* inverted document frequency). The inverted document frequency of a given term is
the number of documents in a collection containing the term; these values are found
in a language resource which implements an inverted document frequency table. The
table can be created from a file on disk or computed on the fly for the current corpus
to be summarized. With the latter option, the values can then be saved for future use.
Statistics can also be computed for units other than tokens (e.g., named entities) and
used to associate frequency information to them.
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A term frequency resource computes the sum of the tf*idf of all terms in each sen-
tence (note that because frequent terms such as ’the’ have nearly zero idf values, their
contributions to the term frequency feature are minimal). These values are normalized
to yield numbers between 0 and 1.

A content analysis module is used to compute the similarity between two text
fragments in the document represented in the vector space. The measure of similarity
is the cosine of the angle between the two vectors given by the Cosine formula:

Cosine(X, Y ) =
P

Xi∗Yi√P
(Xi)2∗

√P
(Yi)2

where X and Y are text representations based on a vector space model implemented in
SUMMA and Xi and Yi are the weights of the i term in the representation. There are
various ways in which SUMMA uses this similarity computation; one is to compute
the similarity of the title of the document to each sentence (title method), another one
is to compute the similarity of each sentence to a particular user query (query-based
method), yet another is to compute the similarity of each sentence to the first sentence
of the document; finally for each sentence the similarities forward (with following
sentence) and backward (with previous sentence) can also be computed.

The sentence position module computes two features for each sentence: the abso-
lute position of the sentence in the document and the relative position of the sentence
in the paragraph. The absolute position of sentence i receives value i−1 while the
paragraph feature receives a value which depends on the sentence being in the begin-
ning, middle or end of paragraph. These values are parameters of the system and can
be modified by the user.

For a cluster of related documents, the system computes the centroid of the set of
document vectors in the cluster. The centroid is a vector of terms and values which is
in the center of the cluster. The value of each term in the centroid is the average of the
values of the terms in the vectors created for each document.

The similarity of each sentence in the cluster to the centroid is also computed using
the procedure stated above. This value is stored as a sentence feature and used during
sentence scoring in multi-document summarization tasks (Saggion and Gaizauskas,
2004). Note that the processing resource implementing this algorithm requires a set
of documents (i.e., GATE corpus) as a parameter.

Figure 2 shows the document annotated with different summarization features and
the score produced by the summarization toolkit. The Figure shows again the GATE
GUI; here a document which has been processed with SUMMA tools is presented.
These sentences have been enriched with features (paragraph_score, position_score,
query_sim, etc.) and values computed by different components. These features are
stored as sentence features and used to produce the sentence final score (feature score).

The final score for a sentence is computed using the following formula:
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Figure 2. GATE GUI showing sentence features computed by SUMMA.

∑n
i=1 featurei ∗ weighti

where featurei are features computed by SUMMA and the weights (weighti) are ob-
tained experimentally. These components can be changed by the user and constitute
parameters of the summarization process (the summarizer comes with pre-established
weights). Feature names are constants specified in the SUMMA resources.

3.3. Language Resources

In text summarization, corpus statistics information is often used since the dis-
tribution of terms in documents together with the distribution of terms in a collection
can be used as indicators of term-hood and therefore of content relevance. An inverted
document frequency (IDF) table provides information about the distribution of terms
in a document collection. In SUMMA, this is implemented as a language resource,
created from a text file which records information about the corpus size and the num-
ber of documents each term appears in. IDF tables are used to compute statistics over
documents to be summarized by the statistics module. Although tables can be created
by any external program, they can also be created within SUMMA: given a tokenized
corpus, a table can be created on the fly and stored for later processing, or the table
can be used after creation by the statistics module.
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An n-gram computation algorithm has also been implemented which creates n-
grams annotations for the documents, and these are stored in annotation sets. These n-
grams are used in SUMMA to support content-based evaluation as well as to calculate
similarity between text fragments, thus supporting redundancy detection during multi-
document summarization.

3.4. Multi-document Summarization in SUMMA

SUMMA implements multi-document summarization in a similar way to single
document summarization by computing a score for each sentence in the input doc-
ument cluster. Multi-document features are usually combined with single-document
features to produce the sentence scores. The multi-document feature used in SUMMA
is the centroid feature, which is very effective for this task. In addition to scoring sen-
tences in multiple documents, a method has been implemented for measuring the sim-
ilarity between sentences and to detect redundancy – a specific requirement in multi-
document summarization (see Section 5.1). Another requirement of multi-document
summarization is a method to create the final summary, i.e., how to order the resulting
set of selected sentences. Two methods are provided: one concatenates the sentences
according to the scores they had obtained; and the second depends on temporal and
positional order, i.e., it takes into account the date of the document (stored as a fea-
ture in the document) and the position of each sentence within the document. Thus
information in earlier (or later) documents is presented first (and sentences in order
of occurrence). A GATE document is created with the selected sentences, which are
annotated with features describing the document they came from.

3.5. Ready-made Summarization Applications in SUMMA

GATE comes with an information extraction application called ANNIE (A Nearly
New Information Extraction System), which provides a pipeline of processing re-
sources; the ANNIE system can be created with default or user-specified parameters
and constitutes a typical pipeline for named entity recognition and tracking. This sys-
tem allows users not only to understand how an application can be created within the
platform, but also to rapidly test it using a new document sample. It has the added
advantage of providing a baseline information extraction system other systems will be
compared to.

In the same spirit as ANNIE, SUMMA implements three different summarization
applications: a single-document summarization system, a query-based summarization
system, and a centroid-based multi-document summarization system. All three sys-
tems are created from a list of components loaded by the system and sequenced in
a pipeline. In the case of a query-based summarization system, a runtime parameter
represents the query which is implemented as a string. In a typical situation, a set of
documents matching a query is retrieved from Google or Yahoo! and then summarized
with the application; all this can be easily implemented in the GATE platform thanks
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to the availability of plug-ins for Web access. Components are loaded with default
parameters which the user can modify.

4. Summarization Evaluation

Evaluation of summaries is a complex issue, and in the last decade much research
has been devoted to this problem. While research in text summarization has always
presented evaluation results of one type or another, ten years ago the first system-
independent evaluation took place: the SUMMAC evaluation (Mani et al., 1998).
This event was very significant for the research community, because for the first time
systems were compared and measured using the same yardstick.

Two types of evaluation are generally considered in summarization (Sparck Jones
and Galliers, 1995). In an intrinsic evaluation the summaries produced are evaluated
in terms of whether they contain the main topics of the source and whether they are
acceptable texts. Variables measured can be the proportion of key information covered
or precision/recall statistics as well as grammaticality and coherence scores. The con-
tent of an automatic summary can be compared to the content of a human-produced
summary in terms of word or “propositional” overlap. In an extrinsic evaluation, the
summaries are evaluated in a concrete task seeking to verify if the summaries are
instruments which could be used instead of full documents in specific situations. Vari-
ables measured can be accuracy in performing a task and time to complete the task.
While extrinsic evaluation is very attractive from the point of view of information ac-
cess, it is also very time-consuming and costly, so its application has been limited. In
recent years large-scale evaluation of summarization systems has been carried out un-
der the auspices of the National Institute for Standards and Technology with the Doc-
ument Understanding Conferences programme (Over et al., 2007) (and now by the
Text Analysis Conferences - TAC)1. The approach used is mainly intrinsic, although
some efforts to simulate specific information access tasks have also been undertaken.

In the context of single document-summarization, the traditional metrics used
for evaluating sentence extraction systems are precision and recall (Firmin and
Chrzanowski, 1999). Precision is the ratio of the number of summary-sentences
identified by the system to the number of sentences; recall is the ratio of summary-
sentences identified by the system to the number of true summary sentences. Precision
and recall are currently being questioned by researchers because they fail to measure
content coverage, since they only take into account the identity of a sentence and not
its content. Nonetheless, in spite of their limitations, they still serve as the basis for
current “content-based” fine-grained metrics adopted by the research community.

Current summarization evaluation methods rely on content-based metrics, which
compare the content of an automatic summary to the content of a human summary
and produce a similarity score. A high score indicates that the automatic summary is

1. http://www.nist.gov/tac/

http://www.nist.gov/tac/
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close in content to the human summary (e.g., a sentence such as “Three people were
killed in the blast” and “In the blast three were killed” should be considered close in
content in spite of their differences). Some metrics used are word or lemma overlap,
cosine similarity (which treats documents as vectors of terms), and longest common
subsequence between sentences (which takes into account the number of minimal
transformations to transform one sentence into another).

In GATE, evaluation metrics used in information extraction contexts, such as pre-
cision, recall, and f-score, are available and can be used to evaluate summaries created
by SUMMA. Because of the way in which summaries are created – as summary anno-
tations in a particular annotation set – the computation of precision, recall, etc. is quite
simple using the annotation Diff package in GATE. In order to compare summaries
produced by different methods, including human extracts, using the GATE evaluation
framework, it is sufficient to produce different annotation sets, one per summary to be
compared.

5. Content-based Evaluation Modules in SUMMA

In the SUMMA package, a number of evaluation metrics based on vocabulary
overlap have been implemented as processing resources which output evaluation re-
ports.

5.1. Content-based metrics

In our research at the Johns Hopkins Workshop in Language Engineering (Saggion
et al., 2002a), we investigated measures for content evaluation based on the notion of
vocabulary overlap. They were developed to reduce the problems with precision and
recall. As they are completely automatic, they overcome the problems of task-based
evaluations and can be used in both extractive and non-extractive summarization, sin-
gle and multi-document summarization. Past research has shown that content-based
evaluation can be carried out in an automatic or semi-automatic fashion (Donaway
et al., 2000; Paice and Oakes, 1999). Content-based similarity measures are functions
that take as arguments two text representations and compute a real value in the interval
[0..1]; the value 1 means that the two texts are closely related while the value 0 means
that the two texts are quite different. SUMMA implements various measures; for ex-
ample the Cosine metric is used to measure the similarity between two texts in the
vector space and used to compare system with ideal summaries. Also implemented is
a unit overlap metric, which is computed using the following formula:

overlap(X,Y ) = ‖X∩Y ‖
‖X‖+‖Y ‖−‖X∩Y ‖

where X and Y are text representations based on sets. Here ‖S‖ is the size of set S.
These sets contains n-grams from the document. A weighted n-gram metric is also
computed using the following formula:
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NgramSim(T1, T2, n) =
∑n

k=1 wk ∗ |grams(T1,k)∩grams(T2,k)|
|grams(T1,k)∪grams(T2,k)|

where n means that n-grams 1, 2, ... n are to be considered, grams(T, k) is the set of
k-grams of fragment T , and wk is the weight associated with the k-gram similarity of
two sets where the weights are uniform and computed as follows:

wi =
i∑

j=1,2,...n j
for i = 1, 2, ..., n

5.2. BLEU and ROUGE Evaluation

BLEU is an intrinsic evaluation measure used in Machine Translation which com-
pares the content of a machine translation against an “ideal” translation. The metric
has been found to correlate closely with human judgments, being reliable even when
run on different documents and against different numbers of model references. It is
based on a “weighted average of similar length phrase matches” (n-grams), it is sen-
sitive to longer n-grams (the baseline being the use of up to 4-grams), and it also
includes a brevity penalty factor for penalizing translations which are shorter than the
“gold standard” translations (Papineni et al., 2001). In Lin and Hovy (2002) BLEU has
been applied to summarization. The authors note the unstable and unreliable nature of
manual evaluation and the low agreement levels between humans on the contents of a
reference summary. In a number of experiments we have carried out using BLEU in
the evaluation of summarization systems (Pastra and Saggion, 2003), we have found
that using a single reference affects the reliability of the results provided by the metric,
so multiple references should generally be used. We have also found that estimating
the average rank of a summarization system might yield consistent and reliable results
even with a single reference summary and therefore compensate for lack of multiple
reference summaries. We have implemented BLEU in the SUMMA package as a pro-
cessing resource that given as parameter a summary or extract, an n-gram parameter
(e.g., 1, 2, 3, 4), and a set of reference summaries (in a corpus), computes the IBM
Blue score between each document and each reference summary and produces a re-
port which can then be used for further statistical testing. The exact formula used for
computing the BLEU score is as follows:

Bleu(S, R) = K(S, R) ∗ eBleu1(S,R)

Bleu1(S, R) =
∑

i=1,2,...n

wi ∗ lg(
|(Si

⋂
Ri)|

|Si|
)
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K(S, R) =

{
1 if |S| > |R|
e(1− |R|

|S| ) otherwise

wi =
i∑

j=1,2,...n j
for i = 1, 2, ..., n

where S and R are the system and reference sets. Si and Ri are the “bags” of i-grams
for system and reference. n is a parameter of the implementation.

ROUGE (Lin and Hovy, 2003) is a recall metric which also considers n-grams
as units for comparing automatic and human summaries. We have implemented a
language resource which computes ROUGE-n values, where n is a parameter of the
resource. The formula we use is the one specified in Lin (2004).

ROUGE-n(Summary,Ideals) =∑
I∈Ideals

∑
n-gram∈Summary countmatch(n-gram))∑

I∈Ideals
∑

count(n-gram)

where Summary is the summary to be evaluated, Ideals is the set of ideal (human)
summaries, countmatch is the number of common n-grams in I and Summary, and
count is the number of n-grams in the ideal summaries. The evaluation produces a
report comparing each system summary against a set of ideal summaries, and this in-
formation can be used to compute confidence intervals for system ranking and cluster-
ing. Some ROUGE configurations have been shown to correlate with rankings based
on content produced by humans. Future versions of SUMMA will include the whole
ROUGE battery (e.g., ROUGE-LCS, ROUGE-W).

6. Learning Framework for Summarization

SUMMA follows the Edmundsonian summarization paradigm (Mani, 2001), in
which features are combined with specific weights in order to score sentences; how-
ever, SUMMA can be used for learning summarization systems in a way similar to
the one introduced in (Kupiec et al., 1995) and depicted in Figure 3. In this frame-
work a set of documents and summaries is used to create an aligned corpus (A, B, and
C) – this can be achieved using aligned techniques described in Jing and McKeown
(1999); Marcu (1999) – or a set of documents with extracts used if available (C); thus
one knows for every sentence in the document whether it is a summary sentence or
not (this is the target information to be learned). A program is run over the corpus to
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Figure 3. Framework for Learning Sentence Extraction Systems.

compute summarization features (D and E). The corpus is used to train a classifier (F
and H). Finally, a new document (G) is processed by the feature extraction program
(D) and fed into the classifier (H) to obtain a summary (I).

Using GATE and SUMMA functionalities, this paradigm can be easily instantiated
following these steps:

1) A corpus of documents with annotated extracts is loaded in GATE. This can
be instantiated by using the SummBank corpus, where each sentence in a document
cluster contains relevance judgments assigned by humans (see Saggion at al. (2002b)).
There are two possibilities when using relevance judgments: one possibility is to use
the judgment itself as the target (or class) of the learning program, the other is to
create extracts at certain compression rates (e.g., 10, 20, 30 percent) and consider as a
feature the relevance judgment (e.g., a sentence belongs to the extract if its relevance
is greater than a threshold), and in this case yes/no judgements are used for learning.
This implements step C.

2) The corpus is processed using SUMMA tools in order to produce summariza-
tion features; these features can be used as they are, or can be transformed into discrete
values. This implements steps D and E.

3) One of the machine learning algorithms available in GATE – Support Vector
Machines or Naïve Bayes Classifiers – is invoked for a sentence classification task.
The features to be used and the class to be learned have to be specified in a configura-
tion file. This implements steps F and H.

4) The classifier is saved and used for new documents which will have features
computed by SUMMA. This implements sequence G, H, and I.
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Note that because SUMMA computes summarization features as GATE annota-
tions, the communication between SUMMA and the learning component is facilitated
by GATE. Additionally, the computed features may be exported for use in any other
application outside GATE. Thus we can see that the SUMMA system provides all
necessary components to follow the learning paradigm, and they are all integrated
into one platform.

7. Practical Applications and Multilinguality

The SUMMA summarization toolkit has been used in two fully-implemented in-
formation access systems as well as in international evaluations on text summariza-
tion, demonstrating the flexibility and adaptability of the toolkit. Here we give a brief
description of these applications. The multilingual capabilities of the system inher-
ited from GATE made possible the use of SUMMA to provide cross-lingual extracts
from a large multi-lingual corpus in the Clarity project (Demetriou et al., 2004). In
addition to the English summarization system, adaptations were undertaken to pro-
duce summaries for Latvian, Swedish, and Finnish. The adaptation for each language
consisted in the use of specific tokenizers and sentence splitters implemented in GATE
and statistical tables for each language; all summarization-specific modules were used
without the need for language-specific adaptation.

In the Cubreporter information access system (Gaizauskas et al., 2007), the tool
was also used to provide single and multi-document summarization functionalities.
The Press Association news archive (over 8 million news stories) was single-document
summarized using SUMMA in order to provide access points during document re-
trieval. Multi-document summaries computed off-line were provided for all sets of
related documents in the text collection. In addition, an on-line multi-document sum-
marization function was made available to the user in order to summarize sets of doc-
uments selected during system interaction.

Customized summarization solutions were also used for the Document Under-
standing Conferences (Saggion and Gaizauskas, 2004; Saggion, 2005), where our
centroid-based multi-document summarization system performed very well in the
competition, and for the multilingual summarization evaluation competition (MSE
2005), where summarization in Arabic was carried out (Saggion, 2006), again using
the multilingual capabilities that GATE provided, including tokenization and sentence
recognition in Arabic. The tool was also used to support experiments on clustering
for cross-source coreference (Saggion, 2008). In addition to these practical applica-
tions, SUMMA has also been used for training and NLP courses to demonstrate text
summarization concepts.
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8. Related Work

There have been a number of summarization components described in the litera-
ture including SUMMARIST (Hovy and Lin, 1999), SweSum (Dalianis et al., 2004),
FEMSum (Fuentes et al., 2006), and ContextO (Crispino and Couto, 2004). An im-
plementation of text summarization using the GATE platform was produced by (Lal
and Ruger, 2002), but it has not been made available or developed any further.

The SUMMARIST system was one of the first tools to implement and combine a
number of methods for feature computation, including the position method (Lin and
Hovy, 1997), cue-phrase method, term frequency method, and the topic signatures
method (Lin, 1998). To the best of our knowledge, apart from extensions to cope
with multiple languages, the system has not been further developed or made freely
available.

The SweSum system is being developed with the challenges of processing Scandi-
navian languages, although it also produces summaries for English. It is worth noting
that SUMMA has been adapted to Scandinavian languages for the CLARITY project.
Summarization methods implemented in SweSum are the position method (absolute
and relative), the identification and scoring of sentences based on the presence of
named entities or numerical data, and the scoring of sentences based on the presence
of typographical features (e.g., headlines). As in SUMMA, features are combined
with appropriate weights in a simple formula or used in a decision tree trained over
manually created extracts. It is thus similar to SUMMA; however, in spite of offering
a Web interface for summarizing Web pages, it has not been made publicly available.

FEMsum (Flexible Eclectic Multi-task Summarizer) is an architecture for auto-
matic text summarization which allows researchers to investigate text summarization
in different contexts. In the same spirit as SUMMA, it has been used to create different
systems for different summarization tasks (e.g., for the DUC evaluations), achieving
some degree of success. The specification of the architecture includes three main
components: a relevance information detector, which ranks sentences or units; a con-
tent extractor, a set of linguistic analyzers including named entity detection; and a
summary composer. Unlike SUMMA, whose components are specified as GATE re-
sources and use annotations as an underlying communication mechanism, it is unclear
how composition and communication between components are achieved in FEMsum.

ContextO is based on work on “contextual exploration” (Minel et al., 2001). The
platform integrates text summarization with a visualization and navigation module, al-
lowing users to create “dynamic” summaries in the sense that the type of information
to extract, the compression rate, and the modes of exploration of the summary can
be specified. The summary text is coupled with the source document; thus the user
has access to the context of specific pieces of information. Semantic information is
identified by hand-coded contextual rules that are fired when specific linguistic mark-
ers are found in the document. SUMMA is different from ContextO in a number of
ways. ContextO concentrates on semantic information, while SUMMA implements
generic summarization features. ContextO requires an extensive rule-base to detect
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relevant information, SUMMA relies on a more light-weight approach to summariza-
tion. Where presentation of information is concerned, as in ContextO, SUMMA also
offers summaries with access to the context of the selected sentences.

Closer to SUMMA is MEAD (Radev et al., 2004), a platform developed at the
University of Michigan2 which provides a set of tools implemented in Perl to cre-
ate summarization applications. As in SUMMA, MEAD implements a number of
feature-computation programs (position, centroid, and query similarity), which can be
combined with appropriate weights. All communication in MEAD is based on an in-
ternal XML-based schema – documents and configuration files for different tasks; this
is not necessary in SUMMA. SUMMA has some advantages over MEAD, because
it can make use of a number of linguistic processors available in GATE without the
need for complicated conversion from one format to another. Additionally, SUMMA
implementation in Java makes it usable across different platforms. As in SUMMA,
evaluation functionalities such as precision, recall, and the BLEU statistics are avail-
able. MEAD has also been used in a number of applications including NewsInEssence
(Radev et al., 2001).

9. Conclusions and Perspectives

Summaries provide readers with abbreviated descriptions of the contents of full
documents. They are used in a variety of situations, from deciding whether or not to
read a document to the extraction of key information from text. While text summariza-
tion has been on the natural language processing research agenda for a long time, it
has, in the past decade, gained impetus due to the increasing availability of documents
in digital format and the need to filter massive amounts of information. Automatic
text summarization is required in order to provide users with access points to relevant
information in private (Intranets) and public (the Web) text collections through the
generation of document surrogates.

This paper has presented the SUMMA toolkit, a set of summarization components
based on the well known GATE platform. Although this paper has mainly concen-
trated on the toolkit itself, it has also shown how SUMMA was used in various infor-
mation access scenarios.

SUMMA makes available well-established summarization methods through the
implementation and integration of algorithms and evaluation resources in a widely
used architecture, therefore facilitating the development, testing, and deployment of
fully-fledged summarization solutions.

We believe this could facilitate replicability of colleagues’ ideas, implementation
of new ones, and evaluation in a well-established framework. Because of its integra-
tion with GATE, a framework for training and deployments is inherited.

2. The author of this paper has also been involved in the development of MEAD.
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The SUMMA tool will continue to be extended in order to cope with new chal-
lenges, for example to support semantic-based summarization as well as summariza-
tion of opinions. We are currently investigating the use of machine learning techniques
for rhetorical classification in technical articles. We are also studying supervised ap-
proaches to the identification of opinions and sentiments in text, and we plan to make
these functionalities available in a future version of SUMMA in order to study the
problem of opinion summarization. Additionally, evaluation metrics will be extended
to cope with evaluation requirements imposed by international evaluation programs.
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Appendix

The software is distributed3 as a tar file which contains a number of components.
The distribution includes a jar file, creole.xml file, and a resources directory containing
an IDF table. The creole.xml file specifies each of the components which are available
when loading the SUMMA plug-in into GATE. One example of a processing resource
specification found in the SUMMA creole file is given below:

<RESOURCE>

<NAME>SUMMA Statistics</NAME>

<CLASS>sumgate.resources.frequency.TermFrequency</CLASS>

<JAR>sumgate.jar</JAR>

<PARAMETER NAME="document"

COMMENT="The document to be analysed"

RUNTIME="true">gate.corpora.DocumentImpl</PARAMETER>

<PARAMETER NAME="table"

COMMENT="The IDF table"

RUNTIME="true">

sumgate.resources.frequency.InvertedTable

</PARAMETER>

<PARAMETER NAME="leadPercent"

COMMENT="The percent of lead text"

DEFAULT="10.0"

RUNTIME="false">java.lang.Double</PARAMETER>

</RESOURCE>

3. http://www.dcs.shef.ac.uk/ saggion/summa/default.html
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This is the resource in charge of computing statistics for each “token” in the input
document. Parameters are the document to be used, the IDF table to be used (which
is a language resource), and an indication of what proportion of the document is to be
considered the leading part of the document.

The components distributed with the current version of SUMMA include:

– A basic document analyzer;
– Statistic computation module and vector space model representation;
– Absolute position method;
– Relative position method;
– Centroid computation and sentence-centroid similarity computation;
– Term frequency method;
– Title method (similarity to title);
– First sentence method (similarity to first sentence);
– Query method (similarity to a query);
– Cue-phrase method;
– Named entity method (relevance of named entities in sentence);
– Feature combination;
– N-gram computation;
– Content-based evaluation metrics;
– Summary writer.

Documentation on how to produce a summarization application and dependencies
between components (precedence) is given in a user guide distributed with SUMMA.
The only mandatory annotations required by SUMMA are sentences and tokens that
can be created by available GATE components (i.e., the tokenizer and sentence split-
ter). Implementing new summarization features in SUMMA is done in the same way
as implementing a GATE processing resource; however, in order to comply with the
way in which SUMMA operates, the computed feature should be stored as a sentence
feature.
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