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ABSTRACT. Clinical concept normalization involves linking entity mentions in clinical narratives
to their corresponding concepts in standardized medical terminologies. It can be used to
determine the specific meaning of a mention, facilitating effective use and exchange of clinical
information, and to support semantic cross-compatibility of texts. We present a rule-based multi-
pass sieve approach incorporating both exact and approximate matching based on dictionaries,
and experiment with back-translation as a means of data augmentation. The dictionaries are
built from the UMLS Metathesaurus as well as MCN corpus training data. Additionally, we train
a multi-class baseline based on BERT. Our multi-pass sieve approach achieves an accuracy of
82.0% on the MCN corpus, the highest for any rule-based method. A hybrid method combining
these two achieves a slightly higher accuracy of 82.3%.

RÉSUMÉ. La normalisation des concepts cliniques consiste à relier les mentions d’entités dans les
récits cliniques à leurs concepts correspondants dans des terminologies médicales normalisées.
Il peut étre utilisé pour déterminer la signification spécifique d’une mention, faciliter l’utilisation
et l’échange efficaces d’informations cliniques et soutenir la compatibilité sémantique des textes.
Nous présentons une approche de tamisage multi-passes intégrant deux types de correspondance
– exacte et approximative – basée sur des dictionnaires construits avec UMLS Metathesaurus et
le corpus MCN, et expérimentons la rétro-traduction comme moyen d’augmenter les données. De
plus, nous preparons une méthode de référence multi-classes basée sur BERT. Notre méthode de
tamisage multi-passes atteint une précision de 82,0% sur le corpus MCN, la plus élevée de toutes
les méthodes fondée sur des règles. Notre méthode hybride réalise une précision légèrement
supérieure de 82,3%.

KEYWORDS: Clinical concept normalization, Rule-based sieve, Back-translation, Neural classifier.
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1. Introduction

Free-text clinical notes and discharge summaries are a rich resource for clinical
information, and have been utilized in a variety of clinical applications, such as clin-
ical decision making, adverse drug effect analysis, and mortality prediction (Topaz
et al., 2016; LePendu et al., 2012; Weissman et al., 2018). Extraction of key clinical
concepts mentioned in free-form clinical notes is an important step towards capturing
patient-specific signs, symptoms, and disorders that are recorded in the course of care
documentation. This requires: (1) concept recognition to identify where a relevant
clinical concept is mentioned in the text; and (2) normalization of the recognized
concept to a standard identifier from a controlled vocabulary, such as that provided by
the Unified Medical Language System (UMLS) (Bodenreider, 2004), which enables
standardization in the concept representation. Our work focuses on the second step of
clinical concept normalization. This step requires handling of linguistic variation to
unify different ways of referring to the same concept, as well as strategies to deal with
ambiguity — a term that may refer to different concepts, depending on context — and
coverage gaps — mentions that do not link to any concepts in a given knowledge base
(D’Souza and Ng, 2015; Li et al., 2017).

In this paper, we focus on normalizing mentions in the MCN (Medical Concept
Normalization) corpus, as adopted in N2C2 2019 shared task 3 (Luo et al., 2019). This
task was aimed at mapping each mention in a discharge summary to a clinical concept
in the form of a Concept Unique Identifier (“CUI”) in UMLS 2017AB, concentrating
on concepts from either SNOMED-CT (Spackman et al., 1997) or RxNorm (Liu
et al., 2005).

In comparison to previously released clinical concept normalization corpora —
such as the datasets of ShARe/CLEF eHealth 2013 Task 1 (Pradhan et al., 2013),
SemEval-2014 Task 7 (Pradhan et al., 2014), and SemEval-2015 Task 14 (Elhadad
et al., 2015) — this dataset reduces the volume of “CUI-less” mentions (mentions that
cannot be mapped to a CUI) by expanding the scope of the knowledge base, as well
as splitting and adjusting compositional concepts. Specifically, the search space was
broadened from a restricted set of 11 disorder-related semantic types in SNOMED-CT
to any concept in SNOMED-CT and RxNorm, covering a large set of clinical concepts,
including medical problems, treatments, and tests. Each compositional mention span
was split into multiple smaller spans that can be normalized to an existing CUI. For
example, given that no direct CUI exists for left breast biopsy, it was split into left and
breast biopsy, where breast biopsy maps to C0405352 in SNOMED-CT. Ultimately,
only 2.7% of mentions were labelled as CUI-less in the final dataset. Furthermore,
though ambiguity is abundant in the clinical domain, the restrictions applied in the
MCN corpus reduce it greatly (only SNOMED-CT and RxNorm concepts). To be
concrete, just 233 mentions among 6,684 instances in the training data of the MCN
corpus fall into this category. Therefore, in the context of this specific dataset, the
key challenge is not coverage gaps or ambiguity, but variation: mentions which vary
lexically and grammatically and are linked to the same CUI.
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The goal of the work described in this paper is to improve the accuracy of concept
normalization in clinical discharge summaries, and empirically investigate the impact
of back-translation (Sennrich et al., 2016) on the clinical normalization task.

Unlike normalizing medical mentions in social media text (Limsopatham and Col-
lier, 2016) or shorter clinical texts such as emergency department triage notes (Aamer
et al., 2016), discharge summaries written by clinicians or nurses are more formal. As a
result, the main focus in this work is on matching mentions and their variations obtained
through morphological alternation with concept names in standardized terminologies,
with a particular emphasis on rule-based approaches over machine-learning models.
Rule-based methods have the advantage of being redeployable to new vocabularies,
as they do not rely on training data (Groza and Verspoor, 2014). We compare our
rule-based method with a neural classifier based on BERT (Devlin et al., 2019).

Furthermore, inspired by cross-lingual normalization, we perform back-translation
over three different languages (Chinese, French, and German), on original mentions,
and then perform exact matching over three dictionaries. We assume that we can take
advantage of the following two features of commercial translation tools in our task: (1)
high tolerance to spelling errors and abbreviations; and (2) (controlled) lexical variance
in the output of back-translation.

Our contributions are three-fold: (1) we propose a multi-pass sieve approach using
morphological rules based on UMLS, which we combine with neural models; (2) we
are the first to apply back-translation to the clinical concept normalization task; and (3)
we achieve a new benchmark accuracy of 82.0% on the MCN corpus for a rule-based
method, and 82.3% for a hybrid method combining our rule-based and neural methods
together.

2. Related Work

Clinical and biomedical concept normalization is an active field of research, with
a broad spectrum of proposed approaches, encompassing rule-based and machine
learning-based methods.

Dictionary-based methods focus on strategies for matching terms in a text to the
terms of the controlled vocabulary, represented in a dictionary, generally employing
rules to control the matching of terms. MetaMap (Aronson, 2001), NCBO Annotator
(Shah et al., 2009), and cTAKES (Savova et al., 2010) are three dictionary-based
concept normalization systems that have been widely adopted and shown to have good
effectiveness across a number of biomedical concept recognition tasks (Funk et al.,
2014). Rule-based approaches tend to share a core set of rules relating to abbreviation
expansion, word reordering, and punctuation removal, but equally incorporate specialist
rules customized to specific datasets. For example, POS and chunking related rules
were employed for the AZDC dataset (Kang et al., 2013). Morphological sieves —
where unmatched mentions pass through a series of “sieves”, generally with increasing
recall and decreasing precision, until a match occurs — were developed in previous
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work for the ShARe and NCBI datasets (D’Souza and Ng, 2015). However, manual
work is required to adapt such methods to a new dataset. In addition, the choice of target
terminology (e.g. SNOMED-CT, RxNorm, or MEDIC) often varies across datasets due
to their coverage of domain-specific terms, further limiting the direct employment of
most rule-based systems. Luo et al. (2019) proposed to apply this sieve-based approach
to MCN, achieving an accuracy of 76.35%. We build on this research in our work.

Most machine learning-based methods, such as DNorm (Leaman et al., 2013) and
its extensions (Leaman and Lu, 2014; Leaman and Lu, 2016), incorporate semantic
information by projecting words into vector spaces, where semantic similarity between
the input mention and concept names is measured by a similarity score. The score can
be calculated directly via similarity metrics such as cosine similarity and Euclidean
distance, or learned from the training data. Ranking is generally used as the next
step, to rank the candidate concepts associated with a given mention. Before the
application of word2vec (Mikolov et al., 2013), TF-IDF and its variants were the
dominant word representation. However, as demonstrated by Gong et al. (2018), both
context-dependent and context-independent word embedding methods are heavily
biased by the frequency of occurrence of words, resulting in clusters of rare words with
little semantic similarity. Given that most words in clinical mentions and concept names
are rare in general domains, they cannot be represented accurately through standard
pre-training methods. That is, they tend to be clustered with other rare words rather than
semantically. Hence the performance of machine learning-based methods is limited by
their heavy dependence on the quality of the underlying word representations.

To overcome this bottleneck, instead of calculating cosine similarity to identify
candidates, Xu et al. (2020) applied two approaches, one based on Lucene and the other
based on fine-tuning a BERT multi-class neural classifier. As Reimers and Gurevych
(2019) have shown, fine-tuning can perform much better than directly calculating the
cosine similarity of BERT text representations for semantic textual similarity. The most
critical component here is the neural ranker, which incorporates semantic type into the
loss function as a regularizer, improving performance on multiple datasets. Specifically,
on the MCN dataset, an increase in accuracy of 0.81% is obtained using semantic
type regularization. While one may argue that neural models require large amounts of
in-domain labelled data to perform well, making them impractical for applications in
the clinical domain, recent zero-shot entity linking methods can use disposition which
don’t require in-domain labelled data, suggesting a promising direction for neural
concept normalization (Logeswaran et al., 2019).

3. The MCN Corpus

The MCN corpus (Luo et al., 2019) is a publicly-available medical concept nor-
malization dataset, which was first released as part of 2019 N2C2 Shared-Task and
Workshop Track 3: N2C2/UMass Track on Clinical Concept Normalization. 1 Table 1

1. https://n2c2.dbmi.hms.harvard.edu/track3.

https://n2c2.dbmi.hms.harvard.edu/track3.
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Mentions Unique concepts CUI-less mentions Ambiguous mentions

training 6,684 2,331 151 233
test 6,925 2,579 217 192

TOTAL 13,609 3,792 368 425

Table 1. Numbers of mentions, Unique concepts, mentions labeled as CUI-less, and
Ambiguous mentions (more than one CUI) in the training and test partitions of the
MCN corpus.

provides a statistical breakdown of the dataset. It consists of 13,609 mentions repre-
senting 10,919 distinct expressions with a total coverage of 3,792 unique concepts,
split into 6,648 mentions in the training data set, and 6,925 in the test set.

Two clinical source vocabularies from the 2017AB version of UMLS (Bodenreider,
2004) were used to annotate mentions extracted from 100 discharge summaries: (1)
SNOMED-CT (Spackman et al., 1997), a comprehensive clinical reference term base,
covering concepts from areas such as anatomy, normal and abnormal functions, symp-
toms and signs of diseases, diseases/diagnoses, and procedures; and (2) RxNorm (Liu
et al., 2005), a collection of medications (drug names). The number of unique concepts
in SNOMED-CT, RxNorm, and the combination of the two, is 333,183, 114,150, and
434,056, respectively (Luo et al., 2019). Note that each concept is assigned a Concept
Unique Identifier (CUI), and that ambiguous concepts are assigned multiple CUIs
(Bodenreider, 2004).

We highlight three features of the corpus below, which inform the development of
our method.

Broad coverage of medical concepts

In contrast to disease/disorder entities in corpora such as ShARe/CLEF eHealth
2013 Task 1 (Pradhan et al., 2013), SemEval-2014 Task 7 (Pradhan et al., 2014), and
SemEval-2015 Task 14 (Elhadad et al., 2015), the MCN corpus extends the search
space to all concepts in SNOMED-CT and RxNorm. This reduces the effects of
coverage gaps, where a large proportion of mentions cannot be assigned CUIs due
to the limited coverage of the knowledge base: just 368 (2.7%) mentions could not
be assigned CUIs (i.e. were “CUI-less”). As such, there is little need to distinguish
CUI-less from other mentions before normalizing.

Resolution of compositional mentions

If one span text involves more than one concept, we refer to it as a compositional
mention. For example, breast or ovarian cancer encompasses two concepts: breast
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cancer and ovarian cancer. Left breast biopsy is split into the largest mention span
breast biopsy which can be normalized to C0405352, and the smaller mention span
left. As part of the corpus construction, Luo et al. (2019) split and adjusted the mention
spans so that the smaller spans were annotated using a single CUI.

Formal language

Clinical mentions extracted from discharge summaries are more formal and rigor-
ous than clinically-related social media texts (Limsopatham and Collier, 2016). For
example, head spinning a little in social media text expresses the concept of dizziness
(C0012833), which typically occurs in the more canonical form of dizzy or dizziness
in clinical notes. This makes concept mapping easier.

4. Methods

Based on the three dataset characteristics presented in Section 3, and the fact
that rule-based methods tend to be superior to machine-learning methods under such
settings (Li et al., 2017; D’Souza and Ng, 2015), we focus primarily on a rule-based
method. The procedure from inputting a mention to outputting the CUI is shown in
Figure 1. We further hybridize our method with a neural multi-class classifer based on
BERT (Devlin et al., 2019).

Our approach is made up of three types of pre-processing, followed by exact match,
approximate match, mention permutation, and the neural multi-class classifier, as
detailed below.

4.1. Pre-processing

We pre-process each mention and dictionary term as follows. Steps 6–8 are applied
only to mentions.

1. Lowercase
2. Remove noisy strings and common words such as ’d, ’s, ′′, <, >, his, her, patient,

an, a, and the.
3. Remove possessives (e.g. ’s) and punctuation (e.g. ,, ., -, and / ).
4. Remove prepositions, including of , in, to, for, with, on, at, from, by, about, as,

into, like, through, and throughout.
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Dict with minimal prep CUI

Dict with moderate prep

Permutate mention

Dict with minimal prep CUI

Dict with moderate prep CUI

CUI

A raw mention

EM on Training Dictionary

EM on SNOMED-CT & RxNorm Dictionary

EM on UMLS Other Sources Dictionary

AM on Training Dictionary

Yes

Yes

Yes

Yes

minimal mention

moderate mention

minimal mention

moderate mention

AM on UMLS Other Sources Dictionary

BT (en-zh-en)

EM on All three dicts

BT (en-fr-en)

EM on All three dicts CUI

CUI
Yes

Yes
minimal/moderate

BT (en-de-en)

minimal/moderate

CUI-less

minimal/moderate

EM on All three dicts CUI
Yes

AM on SNOMED-CT & RxNorm Dictionary

Figure 1. Flow diagram of the method. EM, AM, BT refer to “exact match”,
“approximate match”, and “back-translation” respectively. Every rectangular
box has the same five steps as the first one.
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5. Stem with the PorterStemmer in NLTK. 2

6. Expand abbreviations with: (1) diseases and disorders abbreviations of
Wikipedia; 3 and (2) a clinical abbreviation list from NSW Health. 4

7. Convert adverbs into adjectives, based on WordNet. 5

8. Remove common clinical words, such as studies, surgery, operation, procedure,
preparation, test, behavior, well, phase, examination, and series.

We refer to steps 1–2 as “minimal pre-processing”, steps 1–5 as “moderate pre-
processing”, and steps 1–8 as “advanced pre-processing”.

4.2. Exact Match

The three dictionaries mentioned in Section 5 are all made up of concept names
with unique CUIs. Under pre-processing, if mention m is exactly the same as concept
name n, then the corresponding CUI of n is the output of exact match.

4.3. Approximate Match

For mentions that do not match under exact match, two approximate matching
approaches are applied: (1) contains match (“CM”); and (2) edit distance match
(“ED”).

4.3.1. Contains match

It sometimes occurs that a mention is not string-identical with its corresponding con-
cept name, but all component tokens are contained in the concept name. For example,
nystatin ointment cannot be exact-matched to C1247197:Nystatin Topical
Ointment, but each token in the mention is in its corresponding concept name. Hence,
we first generate a candidate list with the restriction that all tokens in the mention m
must match in the concept name, and there can be at most one unmatched token in
the concept name. It should be highlighted that the order of tokens is not considered
during the retrieval of candidates. In the case of multiple candidate matches, we select
the concept name which is shortest.

2. https://www.nltk.org/howto/stem.html.
3. https://en.wikipedia.org/wiki/List_of_abbreviations_for_

diseases_and_disorders.
4. http://www.seslhd.health.nsw.gov.au/Policies_Procedures_

Guidelines/Corporate/Health_Records/documents/
SESLHDPR282-ClinicalAbbreviationsList.pdf.

5. https://wordnet.princeton.edu/.

https://www.nltk.org/howto/stem.html.
https://en.wikipedia.org/wiki/List_of_abbreviations_for_diseases_and_disorders.
https://en.wikipedia.org/wiki/List_of_abbreviations_for_diseases_and_disorders.
http://www.seslhd.health.nsw.gov.au/Policies_Procedures_Guidelines/Corporate/Health_Records/documents/SESLHDPR282-ClinicalAbbreviationsList.pdf.
http://www.seslhd.health.nsw.gov.au/Policies_Procedures_Guidelines/Corporate/Health_Records/documents/SESLHDPR282-ClinicalAbbreviationsList.pdf.
http://www.seslhd.health.nsw.gov.au/Policies_Procedures_Guidelines/Corporate/Health_Records/documents/SESLHDPR282-ClinicalAbbreviationsList.pdf.
https://wordnet.princeton.edu/.
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4.3.2. Edit distance

To handle spelling errors and pluralization for single-word mentions, we calculate
the character-level edit distance between each mention m and concept name n that
also consists of one word, and increase the edit distance threshold up to 3 until a
match is found. An empirical study to determine the optimal threshold is presented in
Section 5.3.3. For time efficiency, we only compare mentions m with concept names
whose length is within three characters’ length of m.

4.4. Mention Permutation

Observing that the original token order of some mentions does not match the order
of the canonical concept name, we generate a list of all possible permutations of a
mention. If any variant matches the concept name, the corresponding CUI will be
assigned. This permutation is applied only after failing to matching the original token
order in the matching process (see Figure 1).

4.5. Back-translation

Inspired by recent work on translation for cross-lingual biomedical concept nor-
malization (Perez et al., 2018; Roller et al., 2018), we propose a heuristic approach
based on back-translation 6 (“BT”) (Sennrich et al., 2016). In this, we use a range
of pivot languages with different linguistic properties, to help deal with derivational
morphological changes, synonym replacements, and spelling errors. Our approach is
straightforward: for all unmatched mentions after approximate match, we perform back
translation from English to Chinese and then back to English, where Google Translate
is used for en–zh, and Baidu Translate for zh–en, following Wang et al. (2020). In
addition, to retain plural forms, we apply BT to French and German as well. 7

4.6. Neural Classifier

Finally, we fine-tune a multi-class classifier, utilizing a single linear layer connected
by a softmax activation function on top of a BERT encoder (Devlin et al., 2019).
Specifically, with the aim of providing a neural classifier baseline, the model is fine-
tuned to classify an unseen mention into one of the 2,331 unique concepts available
in the training data, instead of predicting over all possible concepts in SNOMED-CT
and RxNorm, which contain a combined total of 434,056 CUIs. Moreover, following
the BERT-based neural classification approach of Xu et al. (2020), we do not consider
the sentence or paragraph context in which the mention occurs, but only the mention

6. Back-translation also refers to long-trip translation in prior work.
7. Using Google Translate in both directions.
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text itself. These two factors lead to a big gap in performance compared with other
contextualized transformer-based concept normalization systems developed for the
MCN corpus (see Section 5.5), such as the TTI system (Ji et al., 2020).

In training, 6,684 mention–CUI pairs are used to update the parameters of the
classifier, where each mention is represented by the vector associated with the CLS-
token, and each CUI is indexed by a unique ID ranging from 0 to 2,330.

This multi-class classifier is trained on the basis of the original implementation of
BERT-base with 12 transformer encoders, using the pre-trained weights of Clinical-
BERT (Alsentzer et al., 2019), and the Adam optimizer with cross-entropy as the loss
function. We apply weight decay to the optimizer with a linear scheduler and warm-up
proportion of 0.1, and set the learning rate to 1e-5 and batch size to 32, thus updating
209 (6,684 / 32) steps for each epoch. Given that the accuracy improves on the dev set
when we incrementally increase the training step in steps of 20k instances to 100k, we
stop training at 100k steps for the final test (i.e. 479 epochs = 100k / 209). We apply the
fine-tuned model to the mentions which are not matched by the rule-based approach,
resulting in a hybrid system (see Section 5.4.2).

5. Experiments and Results

5.1. Evaluation Metrics

The standard evaluation metric used for concept normalization systems is accuracy
(Xu et al., 2020), given that the system must assign an identifier for each provided
concept. Accuracy is the percentage of concept mentions that are correctly assigned
CUI labels over all evaluated mentions. To assess performance of each component
of the sieve, precision is adopted. Specifically, for a specific stage of matching, the
percentage of mentions correctly assigned a CUI label, relative to the total number of
matched mentions in that stage, is calculated.

5.2. Dictionary Construction

We constructed three dictionaries, which we employ in priority order as described
below. To obtain a single CUI for a mention during matching, we apply simple
disambiguation strategies. For the dictionary based on the MCN corpus training data,
we retain the highest frequency CUI for an ambiguous mention. For the two dictionaries
based on the UMLS Metathesaurus, we maintain the concept with the most number
of concept names (synonyms). One of these dictionaries is derived from the two
key dictionaries SNOMED-CT and RxNorm, while the other draws on other source
vocabularies of UMLS Metathesaurus, such as MeSH, MSH, and NCI, where CUIs
that are not in SNOMED-CT or RxNorm are ignored, consistent with the annotation
guidelines, solely remaining concepts of SNOMED-CT or RxNorm.
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Source of dictionary Pre-processing Unique concept name Unique concept UACN

¬ Training Data NA 3,739 2,303 51
¬ Training Data minimal 3,092 2,293 64
¬ Training Data moderate 2,932 2,269 92
 SNOMED-CT & RxNorm minimal 1,048,536 433,843 —
 SNOMED-CT & RxNorm moderate 1,041,971 433,304 —
® UMLS Other Sources minimal 622,774 220,415 —
® UMLS Other Sources moderate 561,816 219,622 —

Table 2. The number of unique concept names, unique concepts, and UACN (“unique
ambiguous concept name”: names connected to multiple concepts) in the different
dictionaries. Pre-processing has three types: no pre-processing (“NA”), minimal, and
moderate; see Section 4 for details.

For convenience, we refer to the three dictionaries below according to their sources:
¬ Training Data,  SNOMED-CT & RxNorm, and ® UMLS Other Sources. Table 2
provides the statistics of these dictionaries under different pre-processing strategies.

5.3. Optimizing the matching strategy

In this section, we perform several ablation experiments to optimize the approach
to matching. As has been demonstrated empirically, performing exact match prior
to approximate (partial) match in the matching workflow results in higher precision
(D’Souza and Ng, 2015).However, a number of questions remain in terms of the optimal
matching approach: which dictionary should be adopted as the priority resource,
which pre-processing steps should be employed in the first step, and what range of
threshold value should be set for edit distance (ED) in the approximate match?In
addition we should confirm the effectiveness of back-translation for the clinical concept
normalization task. To answer these questions, we perform ablation studies utilizing
five sample data sets derived from the training data.

We randomly split the training data into five partitions of 20% each (6,684 instances),
resulting in five different groups of development and training data sets, with 1,337 and
5,347 mentions, respectively, in each group. The number of matched mentions and
percentage of accurately matched mentions (precision) are used as metrics to evaluate
which design choice is optimal.

5.3.1. Dictionary priority

Three dictionaries are leveraged during matching, derived from different resources:
¬ Training Data,  SNOMED-CT & RxNorm and ® UMLS Other Sources. Thus,
there are six possible permutations to arrange the three dictionaries in order. Based on
the assumption that the concept name coverage of a dictionary is independent of the
matching method, these permutations are assessed in the setting of exact match, and
the resulting ordering is applied consistently in all matching processes.
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Dict order Dev1 Dev2 Dev3 Dev4 Dev5 AVG

¬ Training 938 (97.23%) 910 (96.37%) 931 (96.89%) 950 (97.05%) 947 (96.73%) 935 (96.85%)
 SNOMED-CT & RxNorm 962 (81.08%) 930 (80.97%) 920 (78.59%) 963 (80.58%) 939 (83.28%) 942 (80.90%)

® Other UMLS 1,058 (76.56%) 1,024 (75.39%) 1,014 (74.36%) 1,067 (74.98%) 1,043 (78.04%) 1,041 (75.87%)
¬,  1,140 (95.99%) 1,118 (94.01%) 1,114 (93.99%) 1,134 (94.18%) 1,141 (95.00%) 1,129 (94.44%)
¬, ® 1,159 (94.31%) 1,146 (91.97%) 1,146 (92.93%) 1,167 (92.72%) 1,161 (93.45%) 1,155 (93.08%)

Table 3. Experimental results of optimizing three dictionaries priority, deciding the
order during match. Each cell is the number of matched mentions (precision). AVG
denotes to the averaged value of the five randomly sampled dev sets.

Step comb Dev1 Dev2 Dev3 Dev4 Dev5 AVG

(a) 1–2 25 (76.00%) 33 (60.61%) 41 (75.61%) 41 (63.41%) 27 (70.37%) 33 (69.20%)
(b) 1–5 28 (75.00%) 41 (60.98%) 45 (75.56%) 47 (55.32%) 31 (70.97%) 38 (67.57%)
(c) 1–3,6,7 28 (78.57%) 36 (66.67%) 43 (79.07%) 42 (64.29%) 27 (70.37%) 35 (71.79%)
(d) 1–8 38 (60.53%) 43 (60.47%) 55 (65.45%) 55 (56.36%) 37 (59.46%) 45 (60.45%)

Table 4. Ablation experiments of mentions pre-processing steps in exact match using
UMLS Other Sources dictionary. Each cell is the number of matched mentions
(precision). AVG denotes to the averaged value of the five randomly sampled dev sets.

In the matching phase, minimal and moderate pre-processing is applied to the five
development sets. As shown in Table 3, the dictionary based on the training data ¬ has
the highest precision although matching the smallest number of mentions. In contrast,
precision using the dictionary based on other UMLS terms (beyond SNOMED-CT
and RxNorm) achieves an accuracy of 75.87% on average, despite the larger coverage.
As a result, the dictionary learned from the training data is set to the highest priority.
Following this, the order of ¬,  and ¬, ® are evaluated, demonstrating the advantage
of SNOMED-CT & RxNorm with higher average precision. Therefore, the order of
dictionary is set as ¬ �  � ®.

5.3.2. Combinations of pre-processing steps

After precise match using dictionaries ¬ and  (row 4 in Table 3), we attempt
to improve cumulative accuracy by increasing the number of matched mentions, by
applying various pre-processing steps to the mention in exact match with the UMLS
Other Sources dictionary. However, the approach to combining pre-processing steps
and the order influences the precision. Hence, we evaluate four ways: (a) steps 1–2,
(b) steps 1–5, (c) steps 1–3 followed by 6 and 7, and (d) all steps 1–8. Table 4 reveals
that combination (c) steps 1–3, 6 and 7 obtains higher precision while combination (d),
applying all steps, increases the overall number of matches. So this order is applied in
the final system architecture.

5.3.3. Edit distance threshold value

The maximum edit distance threshold value also affects precision. We test edit
distance thresholds from 1 to 4 across the five development sets after contain match
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Threshold_max Dev1 Dev2 Dev3 Dev4 Dev5 AVG

1 4 (75.0%) 5 (60.0%) 5 (40.0%) 1 (100%) 1 (100%) 3 (75.0%)
2 7 (42.86%) 9 (55.56%) 8 (25.0%) 7 (42.86%) 4 (25.0%) 7 (38.26%)
3 7 (42.86%) 11 (45.45%) 9 (22.22%) 9 (33.33%) 6 (33.33%) 8 (35.44%)
4 10 (30.0%) 12 (41.67%) 11 (18.18%) 10 (30.0%) 11 (18.18%) 10 (28.85%)

Table 5. Experiments of choosing optimal maximum edit distance threshold in
approximate match. 3 is selected considering both matched mention amount and
precision, thus [1, 2, 3] is used sequentially during matching. Each cell is the number
of matched mentions (precision). AVG denotes to the averaged value of the five
randomly sampled dev sets.

Target language Dev1 Dev2 Dev3 Dev4 Dev5 AVG

Chinese 9 (33.33%) 9 (66.67%) 11 (63.64%) 11 (81.82%) 9 (55.56%) 9 (60.20%)
French 3 (66.67%) 2 (0.0%) 5 (80.0%) 4 (100.0%) 2 (100.0%) 3 (69.33%)
German 4 (50.0%) 2 (50.0%) 3 (66.67%) 4 (75.0%) 2 (100.0%) 3 (68.33%)

Table 6. Experiments with exact match back-translated mentions from three target
languages: Chinese, French and German using three sources dictionaries. Each cell is
the number of matched mentions (precision). AVG denotes to the averaged value of the
five randomly sampled dev sets.

of AM over three dictionaries, and find that there is minimal impact on the number of
matched mentions, even when the threshold is set to 4 (Table 5). To balance precision
and the number of matches, we set 3 as the maximum threshold value for edit distance.

5.3.4. Back-translation impact

There are still unmatched mentions after applying exact and approximate match
with the eight basic pre-processing steps. To assess the potential benefits of back-
translation to clinical concept normalization, we perform exact match on the mentions
that are back-translated from three languages using three dictionaries. As shown in
Table 6, back-translated results from the three target languages all have a positive
effect, with an average precision in range of 60%–70%. The number of matched
mentions back-translated from Chinese is larger than French and German, leading to
more accurate matched mentions. This may be attributed to the fact that Chinese is
linguistically distant from English, and that a mature commercial translation solution is
available from Baidu Translate. Therefore, we first match the result from Chinese, then
French and German in our experiments.

We conduct the whole match process with and without back-translation, and show
that across the five dev sets, the average absolute improvement in accuracy is 0.69%
(Table 7).
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BT Dev1 Dev2 Dev3 Dev4 Dev5 AVG

no 1,250 (85.34%) 1,248 (83.40%) 1,244 (84.29%) 1,258 (84.29%) 1,245 (84.59%) 1,249 (84.38%)
yes 1,263 (85.79%) 1,263 (84.22%) 1,259 (84.89%) 1,274 (85.42%) 1,256 (85.04%) 1,263 (85.07%)

+ 13 (0.45%) 15 (0.82%) 15 (0.60%) 16 (1.13%) 11 (0.45%) 14 (0.69%)

Table 7. The number of matched mentions and final accuracy with (yes) / without (no)
back-translation (BT). The bottom line indicates the improvement in accuracy with BT.

To further evaluate the effectiveness of back-translation (BT), we consider its
application in two additional clinical concept normalization datasets, specifically
ShARe/CLEF eHealth 2013 Task 1 (Suominen et al., 2013) and ShARe/CLEF eHealth
2014 Task 2a (Mowery et al., 2014). Both of these data sets normalize mentions to
concepts in SNOMED-CT. As RxNorm is excluded in the annotation, SNOMED-CT
dictionaries with minimal and moderate pre-processing are constructed (see Section 4).
In these experiments, we report a baseline that uses exact match, and then a variant
which continues to match back-translated mentions to synonyms in the dictionary
(again via exact match).

There are 5,816 and 11,554 (mention, CUI) pairs in ShARe/CLEF eHealth 2013
Task 1 and ShARe/CLEF eHealth 2014 Task 2a training data, respectively, where 1,639
(28.2%) and 3,478 (30.1%) pairs fall into the “CUI-less” category. Exact match is
performed with each concept mention text as input against the SNOMED-CT dictionary.
Without BT, all unmatched mentions are labeled as CUI-less. With BT, each unmatched
mention is augmented with back-translation to match synonyms in the SNOMED-CT
dictionary. As in our previous experiments, Chinese, French and German are applied
sequentially as the pivot language for BT.

Table 8 shows that BT also improves the accuracy of these two clinical concept
normalization datasets by 0.62% and 0.36%, respectively, in line with the results on the
MCN corpus. However, back-translation using German after the other two languages
hurts the performance on both datasets, although it increases the overall number of
matched mentions. Error analysis reveals that this is primarily due to mentions that
have a gold-standard label of “CUI-less” rather than a valid SNOMED-CT CUI. As
discussed in Section 3, compared with these other datasets, the MCN corpus has only
2.7% “CUI-less” terms, therefore we expect that some of these apparent errors are in
fact valid normalizations not available in the gold standard.

5.4. Held-out Evaluation

In Section 5.3, we described the exploration of several design choices over the
sample development sets, to determine the optimal matching procedure for our rule-
based method. In this section, we present the evaluation of the final process on the
held-out test data set of the MCN corpus (6,925 mentions), described in Section 3.
Then we analyze the mentions predicted correctly by the neural classifier.
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BT ShARe/CLEF eHealth ShARe/CLEF eHealth 2014
2013 Task 1 2014 Task 2a

no 3,711 (61.78%) 7,412 (61.58%)
bt_zh 4,076 (62.38%) 8,080 (61.98%)
bt_fr 4,129 (62.43%) 8,217 (62.06%)
bt_ge 4,158 (62.40%) 8,285 (61.94%)
+ 0.62% 0.36%

Table 8. Experiment with/without (“no”) BT on ShARe/CLEF eHealth 2013 Task 1
and ShARe/CLEF eHealth 2014 Task 2a training data sets using exact match over
SNOMED-CT. Each cell reports the number of matched mentions and system
accuracy in this stage. The last row presents the improvement in accuracy after BT
with all three languages (zh, fr, and de).

We evaluate the performance of each sieve step using the number of matched men-
tions, the percentage of correctly matched mentions (precision), and the final accuracy
after this sieve. We note that the final accuracy is calculated by first summing the
number of correctly matched mentions and the correctly-assigned CUI-less mentions
among all unmatched mentions, then dividing by the total number of mentions (6, 925).
For example, considering the first row of Table 9, 57.94% = (3, 898 + 114)/6, 925,
where 114 is the number of correctly-assigned CUI-less mentions among unmatched
mentions after the first sieve.

Note that sieves that do not gain any matched mentions (MMs equal to 0) are
omitted in Table 9, such as approximate match (cm) using training data with both
minimal and moderate pre-processing, approximate match (ed) using moderate training
data and SNOMED-CT & RxNorm, as well as UMLS Other Sources with minimal
and moderate pre-processing. Moreover, approximate match (ed) using Training Data
(minimal) does not contribute to matched mentions with a threshold of 3, and similarly,
no mentions are matched using SNOMED-CT & RxNorm (minimal) with a threshold
setting of 2, for example.

5.4.1. Rule-based Method

As shown in Table 9, exact match predicts more accurately than approximate match.
Specifically, exact match obtains more correctly-matching mentions over the same
number of matched mentions, resulting in higher precision. In terms of dictionaries, the
training dictionary is the most accurate but provides limited variations of concept names
(see Section 5.3.1). The dictionary built on SNOMED-CT & RxNorm vocabularies has
higher accuracy than UMLS Other Sources, while including many more concept names.
Therefore we employed the training dictionary first, then SNOMED-CT & RxNorm,
and lastly UMLS Other Sources in matching. Importantly, back-translation increased
absolute accuracy by 0.46%, with 33 mentions correct out of 43 matched mentions.
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Match type Dictionary Ignore order MMs AMMs (%) Cum-AMMs+Cor CUI-less Cum-Accuracy

Exact Training Data (minimal) no 4,025 3,898 (96.84%) 3,898+114 57.94%
Exact Training Data (moderate) no 197 138 (70.05%) 4,036+106 59.81%
Exact Training Data (minimal) yes 7 6 (85.71%) 4,042+106 59.90%
Exact Training Data (moderate) yes 17 16 (94.12%) 4,058+106 60.13%

Exact SNOMED-CT & RxNorm (minimal) no 1,103 969 (87.85%) 5,027+100 74.04%
Exact SNOMED-CT & RxNorm (moderate) no 192 125 (65.10%) 5,152+96 75.78%
Exact SNOMED-CT & RxNorm (minimal) yes 2 2 (100.00%) 5,154+96 75.81%
Exact SNOMED-CT & RxNorm (moderate) yes 57 53 (92.98) 5,207+96 76.58%

Exact UMLS Other Sources (prep 1,2,3,6,7) no 279 193 (69.18%) 5,400+86 79.22%
Exact UMLS Other Sources (minimal) no 2 2 (100.00%) 5,402+86 79.25%
Exact UMLS Other Sources (moderate) no 14 11 (78.57%) 5,413+85 79.39%
Exact UMLS Other Sources (minimal) yes 3 2 (66.67%) 5,415+85 79.42%
Exact UMLS Other Sources (moderate) yes 3 2 (66.67%) 5,417+85 79.45%
Exact UMLS Other Sources (advanced) no 78 21 (26.92%) 5,438+82 79.71%

Approximate (cm) SNOMED-CT & RxNorm (minimal) NA 251 76 (30.28%) 5,514+62 80.52%
Approximate (cm) SNOMED-CT & RxNorm (moderate) NA 120 47 (39.17%) 5,561+58 81.14%
Approximate (cm) UMLS Other Sources (minimal) NA 12 9 (75.00%) 5,570+57 81.26%
Approximate (cm) UMLS Other Sources (moderate) NA 7 5 (71.43%) 5,575+57 81.33%

Approximate (ed:1,2) Training Data (minimal) NA 18 11 (61.11%) 5,586+54 81.44%
Approximate (ed:1,3) SNOMED-CT & RxNorm (minimal) NA 33 10 (30.30%) 5,596+52 81.56%

Exact (Chinese) All Dicts (minimal/moderate) no 24 19 (79.17%) 5,615+51 81.82%
Exact (French) Two UMLS Dicts (minimal/moderate) no 13 11 (84.62%) 5,626+51 81.98%
Exact (German) Two UMLS Dicts (minimal/moderate) no 6 3 (50.00%) 5,629+51 82.02%

Table 9. Evaluation result of each sieve in the multiple passes. “MMs”, “AMMs”,
“Cum-AMMs”, “Cor CUI-less” and “Cum-Accuracy” refer to Matched mentions,
Accurate matched mentions, Cumulative accurate matched mentions,
Correctly-assigned CUI-less mentions and final Cumulative Accuracy, respectively.
Note that Cum-Accuracy = (Cum-AMMs+Cor CUI-less) / 6, 925. Sieves that do not
gain any matched mentions (MMs equal to 0) are omitted.

Rule-based Neural Hybrid

True 5,629 70 5,699
False 834 392 1,226

6,463 462 6,925

Table 10. The number of correct and incorrect CUIs predicted by the rule-based,
neural and hybrid systems.

5.4.2. Combined Classifier

We apply the neural classifier on the 462 mentions which are assigned CUI-less
by the rule-based method, resulting in 70 additional correct mentions, as presented in
Table 10.

We observe that among the 70 mentions, 11 are CUI-less. Following the features
and changes of terms in Cohen et al. (2010), the remaining 59 mentions are grouped
into seven types related to variations in the concept strings, as listed below. Most cases
involve more than one such source of variation.

1) British/American English spelling differences (*-sation vs. *-zation)
2) singular/plural variants
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N2C2 Team/Method Name Accuracy

EM-UMLS (Luo et al., 2019) 69.52%
EM-UMLS (removing common word tokens) 76.35%
EM-Train 51.75%
EM-Train (removing common word tokens) 76.27%
MetaMap 75.65%
MetaMap (removing common word tokens) 76.35%

Toyota Technological Institute (deep learning) 85.26%
Kaiser Permanente (rule-based) 81.94%
University of Arizona (rule-based and deep learning) 81.66%
Med Data Quest, Inc. (rule-based) 81.01%

Lucene (rule-based) (Xu et al., 2020) 79.25%
Lucene+BERT-rank (rule-based and deep learning) 82.75%
Lucene+BERT-rank+ST-reg (rule-based and deep learning) 83.56%

Neural multi-class classifier (deep learning) 62.35%
Multi-pass sieve incorporating back translation (rule-based) 82.02%
Hybrid system of rule-based and neural classifier (rule-based and deep learning) 82.30%

Table 11. Accuracy of our methods (bottom half) compared with top systems
participating in N2C2 Track 3 Shared Task and recent SOTA hybrid system (Xu
et al., 2020) (middle half) and baselines (upper half) presented in MCN (Luo
et al., 2019). ST-reg refers to Semantic Type Regularization. The bold number
is the best accuracy on MCN.

3) reordering
4) inserted words (such as blood, injection, and visual)
5) removed words and hyphens (removed words include body, screen, placement,

measurement, arrest, activity, study, and cause)
6) alternative expression of numerals (30% vs. partial)
7) synonym replacement consisting of morphological conversion from the same

root and completely different words

5.5. Comparison with Other Systems

We compare our method with the top systems that participated in the N2C2 Track 3
shared task and baselines of MCN in Table 11. Toyota Technological Institute (TTI)
attained the best result in the shared task, peaking at 85.26% accuracy with an ensemble
model of five individually-trained BERT-based models. Our purely rule-based method
achieves 82.02%, outperforming all the rule-based systems that participated in the
shared task, and slightly better than the hybrid method from the University of Arizona
which achieved an accuracy of 81.66%.
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Due to the resource-hungry nature of deep learning algorithms, TTI requires a
significant amount of computational power, and a huge memory footprint due to
the incorporation of BERT. In addition to the dependency on large scale corpora,
training BERT is time consuming, taking days to converge even with the support
of multiple GPUs. These factors severely limit its applicability. In comparison to
this complicated system, our rule-based method is solely reliant on the vocabularies
of UMLS Metathesaurus, and therefore much more efficient in terms of time and
computational resources.

Three major differences exist between the Kaiser Permanente (KP) rule-based
method (the top-performing rule-based method in the N2C2 evaluation) and ours:

1. we utilize distinct strategies for approximate match. In our approach, we look
for the corresponding concept name by judging whether the component tokens
of the mention are contained in concept names or the edit distance is within
the pre-defined threshold, while the KP system searches similar concept names
based on character 3-grams;

2. the KP system used only SNOMED-CT and RxNorm, while we additionally
incorporated other sources from UMLS;

3. the incorporation of back-translation in our approach.

The upper half of Table 11 includes the results of six baseline systems prepared
by the organizers of the MCN shared task.These include two methods without access
to the training data: exact match based on UMLS (EM-UMLS) and MetaMap in two
settings, with and without removing common word tokens from the original mentions.
An additional two baseline systems leverage the training data only to infer a dictionary,
and are matched using exact match. All of these baselines have lower performance
than both the other N2C2 submissions and our reported sieve-based methods.

Xu et al. (2020) also proposed a hybrid system, which differs from our ensemble
approach in that they combine the rule-based candidate generator and neural ranker
together internally, as components of an integrated normalization system rather than
independent methods.

6. Error Analysis

We first compare the rule-based method and the neural method, investigating their
respective strengths and weaknesses, and their common failures. The results of the
rule-based method are then further analyzed, dividing cases into matched CUIs, and
mentions not normalized to a CUI (assigned “CUI-less”).

6.1. Rule-based vs. Neural Methods

As shown in Table 12, 4,338 mentions are assigned the same CUIs by the two meth-
ods, of which 4,160 are correct. For the rule-based method, 96.27% (4, 005/4, 160)
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Agreement Rule-based method Neural method

True 4,160 (60.07%) 1,520 (21.95%) 158 (2.28%)
False 178 (2.57%) 1,067 (15.41%) 2,429 (35.08%)

4,338 (62.64%) 2,587 (37.36%) 2,587 (37.36%)

Table 12. The number and proportion of correct and incorrect predictions over test
data by the rule-based method and neural method.

mentions are identified through exact match in the training data dictionary only, show-
ing that performance on the task benefits from the labelling of real-world usage of the
terms. Of the 2,587 mentions on which both methods do not agree, 1,520 are identified
correctly by the rule-based method while only 158 are found by the neural method.
The overall accuracy is 82.02% and 62.35%, respectively.

We observe that the neural classifier has substantially lower accuracy than the
rule-based method, largely due to the limitation that the neural model can only learn
for the 2,331 CUIs instantiated in the training data. The rule-based method is able to
generalize more readily to unseen cases, by incorporating the vocabularies of UMLS.
80.61% (1, 958/2, 429) of the incorrect predictions from the neural classifier can be
attributed to lacking relevant examples in the training data, involving 1,392 unseen
CUIs. However, as illustrated in Section 5.4.2, due to the use of word embeddings, the
neural classifier is less sensitive to simple variations, such as removing or adding a
word, and changing from plural to singular form. To analyze the common flaws, we
categorize the 178 erroneous mentions shared by the two approaches into five error
types (see Figure 2). We find that ambiguity contributes to the majority of errors, and
requires context to resolve. In detail:

1. Semantic type ambiguity (90 cases): the same concept name maps to multiple
concepts with different semantic types, and is context dependent;

2. Training data misalignment (49 cases): the mention can be correctly
matched via the SNOMED-CT & RxNorm dictionary, but prioritizing the
training data-derived dictionary introduced error. For instance, monitor
maps to C1292786:Observation - action in the training data, while
C0181904:Monitor would be selected via the SNOMED-CT and RxNorm
dictionary;

3. Underspecification (26 cases): some mentions offer insufficient information
to identify the corresponding CUI. For example, the CUI for Calcification of
breast cannot be assigned based on the mention Calcification without further
information related to the location of the calcification;

4. Abbreviation ambiguity (8 cases): the same lexical abbreviation may corre-
spond to multiple concepts. For example, lh can refer to either light-headedness
or Luteinizing hormone. These cases require context to make a correct assign-
ment;
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Semantic type ambiguity

50.56%

Training data misalignment

27.53%

Underspecification

14.61%
Abbreviation ambiguity

4.49%
Missing Abbreviations2.81%

Semantic type ambiguity
Training data misalignment
Underspecification
Abbreviation ambiguity
Missing Abbreviations

Figure 2. Percentage of five major factors leading to the 178 commonly incorrect
predictions of rule-based method and neural classifier.

Matched Unmatched Total

True 5,629 51 5,680
False 834 411 1,245

6,463 462 6,925

Table 13. The number of accurate and inaccurate assignments in mentions that are
assigned CUI-less.

5. Missing abbreviations (5 cases): for terms corresponding to abbreviations
missing in the dictionary, the system fails to match a CUI. For instance, Procan
SR corresponds to Procainamide Extended Release Oral Tablet, and GI in further
gi testing (which stands for gastrointestinal) is missing. We expect that detection
and expansion of abbreviations within mentions will help in such cases.

6.2. Error Analysis of the Rule-based Method

We perform error analysis of the rule-based method, considering two cases: men-
tions incorrectly assigned CUIs through matching (False Positives, 834 cases), and
mentions unmatched to a CUI (False Negatives, 411 cases); see Table 13.
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Figure 3. Length distribution of 467 cases of incorrect normalizations not due to
disambiguation errors (number of tokens).

For the 834 cases erroneously assigned CUIs, the mentions closely match men-
tions in the training data or concept names in a source dictionary. Most errors
are due to inadequate disambiguation, either of semantic type or abbreviation res-
olution. By examining mentions where the predicted and gold standard CUIs
have lexically similar concepts, but have different semantic types, we identify 44%
(367/834) mentions which lack appropriate disambiguation. For instance, the men-
tion Q-waves was matched to C1287077:Q-wave finding with semantic type
of T033:Finding, rather than the correct C1305738:Q-wave feature with
T201:Clinical Attribute.

In the remaining 56% (467/834) of incorrect normalizations, as presented in Fig-
ure 3, there are 320 one-token, 112 two-token, and 35 multiple-token mentions. We
find that 139/320, 52/112, and 5/35 of these are due to abbreviation ambiguity. Length
impacts variability: limited variation of shorter strings facilitates lexical matching, but
a simple disambiguation strategy leads to incorrect assignments. Considering the other
30/35 multiple-token mentions, errors result from: (1) matching to an overly specific
concept, such as matching injury to eyes to C0339055:Injury of globe of
eye (17 cases); and (2) matching to an overly general concept (13 cases).

Analyzing the 411 unmatched mentions by length, in contrast to the matched
mentions above, single-token mentions are in the minority with only 13 cases, while
there are 374 mentions 2–5 tokens in length, and the maximum length is 12 tokens
(see Figure 4). Longer mentions are associated with significant variability, such that
a large proportion of mentions are substantially lexically distinct from any synonym
of a corresponding CUI. Presence of punctuation (61 cases: 40 mentions contain dash
(-), and 21 mentions involve punctuation marks in the set {. % , # / () ’ & ;+ }.),
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Figure 4. Length distribution of 411 unmatched mentions (number of tokens).

stopwords 8 (110 cases), and numeral mismatches (24 cases where numbers were in
a different form from the concept – words, or Arabic or Roman numerals) further
contribute to mismatches.

Term variations in mentions with more than six tokens involve a mixture of word
reordering, synonym replacement, abbreviation expansion, stopword removal, numeral
conversion and summation (IV plus V to 9), and even summarization (diminution of
light touch, pinprick, position, and vibration sense to C0020580:Hypesthesia).
To resolve such cases, more sophisticated methods are required.

7. Conclusion

In this study, we presented a multi-pass sieve approach based on UMLS Metathe-
saurus with various preprocessing strategies. Our method achieves a new benchmark
among rule-based methods on the Medical Concept Normalization corpus, with 82.02%
accuracy. In addition, we empirically investigated the use of back-translation for the
clinical concept normalization task, and achieved promising results. Our final system
integrated a neural classifier to gain a modest 0.28% improvement in accuracy. Error
analysis reveals that more consideration of context is required to distinguish ambiguous
concept names, corresponding to multiple semantic types; we will consider this in
future work.

8. Stopwords from https://www.ncbi.nlm.nih.gov/CBBresearch/Wilbur/
IRET/DATASET/.

https://www.ncbi.nlm.nih.gov/CBBresearch/Wilbur/IRET/DATASET/.
https://www.ncbi.nlm.nih.gov/CBBresearch/Wilbur/IRET/DATASET/.
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