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ABSTRACT. In this paper, we study the formalisation of a dialogue management system using
proof-search on top of a linear logic. We argue that linear logic is the natural formalism to
implement information-state dialogue management. We give particular attention to modelling
question-answering sequences, including clarification requests, and argue that metavariables,
arising from unification in the proof search, play a decisive role in providing a natural formal-
isation. We show that our framework is not only well suited from a theoretical perspective, but
it is also suitable for implementation which we exemplify with a small scale implementation.

RÉSUMÉ. Cet article propose une formalisation de la gestion de dialogue via la recherche de
preuves de formules de la logique linéaire. C’est-à-dire que nous proposons que la logique
linéaire constitue une base naturelle de la formalisation de systèmes de gestion de dialogue
basé sur un état d’information. Nous prêtons une attention particulière à la modelisation des
séquences de questions-reponses (y compris les demandes de clarification), et nous arguons
que les métavariables, résultant des unifications issue de la recherche de preuves, jouent un
rôle décisif dans la formalisation. Nous montrons que notre système est non seulement adéquat
d’un point de vue théorique, mais également d’un point de vue pratique. Ainsi, nous complétons
notre argument d’une implementation d’un système de recherche de preuve générique, ainsi que
d’un exemple de gestion de dialogue l’utilisant.
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1. Introduction

A key aspect of dialogue systems design is the coherence of the system’s re-
sponses. In this respect, a key component of a dialogue system is the dialogue man-
ager, which selects appropriate system actions depending on the current state and the
external context.

Two families of approaches to dialogue management can be considered: hand-
crafted dialogue strategies (Larsson, 2002; Jokinen, 2009) and statistical modelling of
dialogue (Rieser and Lemon, 2011; Young et al., 2010; Huang et al., 2020). Frame-
works for hand-crafted strategies range from finite-state machines and form-filling to
more complex dialogue planning and logical inference systems, such as Information
State Update (ISU) (Larsson, 2002) that we employ here. Statistical models help to
contend with the uncertainty that arises in human interaction; from noisy signals from
speech recognition and other sensors to pragmatic ambiguities.

End-to-end systems that do not specify a dialogue manager as an explicit compo-
nent have gained lots of attention recently (Huang et al., 2020). Although most of
them are focused on chit-chat dialogues, coherence plays a crucial role there too. Typ-
ically the main issues associated with such systems are related to memory limitations
which cause repetition, contradiction and forgetfulness. Having a policy for dialogue
coherence would be beneficial for such systems.

Although there has been a lot of development in dialogue systems in recent
years, only a few approaches reflect advancements in dialogue theory. Our aim is
to closely integrate dialogue systems with work in theoretical semantics and prag-
matics of dialogue. This field has provided accounts for linguistic phenomena in-
trinsic to dialogue such as non-sentential utterances (Schlangen, 2003; Fernández
et al., 2007; Ginzburg, 2012), clarification requests (Purver, 2006; Ginzburg, 2012)
and self-repair (Ginzburg et al., 2014; Hough and Purver, 2012), where the resolution
is intuitively tied to the coherence of what is being said.

To this end, a formal and in particular a logical representation is instrumental.
This paper is concerned with the representation of participant states and transitions in
a unified logical framework.

Even though the progress in bridging dialogue management and theoretical re-
search of dialogue is promising, we believe that it is crucial to use formal tools which
are most appropriate for the task, so that the formalisation and implementation of di-
alogue semantics closely matches the mental picture that experts have. In the view
of Dixon et al. (2009) this is best done by representing the information-state of the
agents as updatable sets of propositions. Subsets of propositions in the information
state can be treated independently, and, therefore, a suitable and flexible way to rep-
resent updates is as propositions in linear logic. We adopt this view here, and further
argue for it in the body of the paper.

We further extend the framework of Dixon et al. (2009) to deal with unclarity
(and certain cases of non-probabilistic ambiguity). Indeed, asking a question is typi-
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cally not done in one utterance which leaves nothing to interpretation. Typically, in a
conversation a question and its answer may be many utterances apart, and the interme-
diate utterances form insertion sequences (Schegloff, 1972), for instance a follow-up
clarification request and a corresponding answer. The insertion sequences are, in turn,
conditioned on the preliminaries for the original question (Levinson, 1983, Chapter 6).
In this paper, we deal with question-answering and clarification requests in a unified
way, within a framework of dialogue management and using linear logic formalisa-
tion.

To deal with unclarity of an initial question, we propose here the use of metavari-
ables, thereby leveraging much research on unification and proof search in various
logical frameworks. That is, metavariables will stand in for any piece of informa-
tion which is left to further interpretation. In particular, in this paper we explore the
potential of using metavariables in the representation of question/answer exchanges.

By using a solid logical basis (Bratko, 2001; Girard, 1995) which corresponds
well with the intuition of information-state based dialogue management, we are able
to provide a fully working prototype 1 of the components of our framework:

1) a new proof-search engine based on linear logic, modified to support inputs
from external systems (representing inputs and outputs of the agent);

2) a set of rules which function as a core framework for dialogue management (in
the style of KoS (Ginzburg, 2012) theoretical account). The rules which we present
below are provided to this engine, in the same form (modulo typesetting);

3) several examples which use the above to construct potential applications of the
system. The engine is able to run domain-specific rules and generic rules together,
forming a working system.

The rest of the paper is structured as follows. In section 2 we review important
background for formalisation and implementation theories: dialogue management,
linear logic and proof search. In section 3 we sketch a treatment of question, answers
and clarification using the aforementioned formalisms. This treatment ignores certain
dialogue management complexities, which we address in section 4. We discuss related
work in section 5. Concluding remarks are provided in section 6.

2. Background

2.1. Dialogue management

2.1.1. KoS

KoS (not an acronym but loosely corresponds to Conversation Oriented Semantics)
(Ginzburg, 2012) provides one of the most detailed theoretical treatments of domain-
general conversational relevance, especially for query responses—see the work of

1. Source code and documentation are available at https://github.com/GU-CLASP/ProLin.

https://github.com/GU-CLASP/ProLin
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Purver (2006) on Clarification Requests, and Łupkowski and Ginzburg (2017) for a
general account—and this ties into the KoS treatment of non-sentential utterances,
again a domain crucial for naturalistic dialogue systems and where KoS has one of the
most detailed analyses (Fernández et al., 2007; Ginzburg, 2012).

In KoS (and other dynamic approaches to meaning), language is compared to a
game, containing players (interlocutors), goals and rules. KoS represents language
interaction by a dynamically changing context. The meaning of an utterance is then
how it changes the context. Compared to most approaches, which represent a single
context for both dialogue participants, KoS keeps separate representations for each
participant, using the Dialogue Game Board (DGB). Thus, the information states of
the participants comprise a private part and the dialogue gameboard that represents
information arising from publicised interactions. The DGB tracks, at the very least,
shared assumptions/visual field, moves (= utterances, form and content), and questions
under discussion.

KoS is based on Cooper’s formalism, Type Theory with Records (TTR) thus can
leverage a wide range of work based on it, including the modelling of intention-
ality and mental attitudes (Cooper, 2005), generalised quantifiers (Cooper, 2013),
co-predication and dot types in lexical innovation, frame semantics for tempo-
ral reasoning, reasoning in hypothetical contexts (Cooper, 2011), spatial reasoning
(Dobnik and Cooper, 2017), enthymematic reasoning (Breitholtz, 2014), clarification
requests (Purver, 2006; Ginzburg, 2012), negation (Cooper and Ginzburg, 2012), non-
sentential utterance resolution (Fernández et al., 2007; Ginzburg, 2012) and iconic
gesture (Lücking, 2016). Being based on types and record-like contexts, we hope that
our framework can also benefit from all this literature.

2.1.2. Information-state update approach

In this work we are employing an information-state update (ISU) approach, follow-
ing several authors, including Larsson (2002) and Ginzburg (2012). In this view we
present the information available to each participant of the dialogue (either a human or
an artificial agent) in a rich information state. Being rich entails that the information
state contains a hierarchy of facts, including the ones that are thought to be shared and
the ones that have not been yet publicised.

Let us now consider the update, another essential component of ISU. In this case,
we rely on a set of rules that will govern the updates. For instance, Ginzburg (2012)
defines one of the most basic rules – the rule of QUD-incrementation – the procedure
of updating the current set of questions under discussion (QUD) if the latest utterance
is a question. This operation is salient to a user and therefore it constitutes the update
of the public part of the information state.

The main benefit of using a rich representation of the information state with un-
derspecified components is to be able to address a wide range of clarifications from
both parties. This is especially beneficial in the case of automatic speech recognition
or natural language understanding errors. But even putting such errors aside, we can
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also consider topically relevant follow-up questions by the system, or contributions
when the user provides more information than they were asked (over-answering).

2.1.3. Questions and clarifications

One of the greatest challenges in theoretical semantics and pragmatics is the treat-
ment of interrogatives in the context of dialogue (Wiśniewski, 2015; Ginzburg, 2012).
Here we distinguish questions as a general surface form and more contextualised
forms of them, such as questions that initiate side sequences and constitute clarifi-
cation requests (CRs). Side sequences usually refer to introducing some new question
under discussion, for instance, requesting some additional information, whereas clari-
fication requests generally account for cases of non-understanding, but the boundaries
between them are often blurred. In the current study we exemplify our approach by
accounting for requests for additional information, but it is only tested for the cases of
system-initiated CRs.

For spoken dialogue systems it is crucial to be able to produce and process clarifi-
cations requests (Purver, 2004). Even though this is not our focus here, in the context
of the low confidence of speech recognition and NLU, the system could clarify its
input with the user. Further, with recent advances in speech recognition and statisti-
cal NLU, users expect to be able to initiate CRs themselves. Because our theory is
symmetric with respect to users and systems roles, it can be useful in this context.

2.2. Proof search as a programming language

The prevailing tradition in formal semantics, including in most pieces of work
cited above, is to represent (declarative) statements as propositions, formalised in an
underlying logic (often first-order logic). In particular, in linguistic theories based on
intuitionistic logic (such as TTR), true statements corresponds to propositions which
admit a proof.

There is a long history of using proof search as a declarative programming
paradigm, where the programmer specifies axioms and rules of inference which model
their application domain. Typically such a system of axioms and rules represents a
database of facts. For example, the axiom (Leave 55 Valand 11.50) can model
the fact that bus 55 leaves from Valand at 11:50. The rule (Leave x Valand y →
Arrive x CentralStationen (y + 45 minutes)) can represent travelling times on a
certain line.

Then, the user may define a query (or goal) as a logical formula. The system
can then search for a proof of a goal as a way to query the database of facts. Of-
ten, goals contain metavariables, 2 which play the role of unknowns for unification:
their value can be fixed to any term for a goal to be reached. For example, the goal

2. Here, we use the convention that metavariables start with a lowercase letter, and constants
(including predicates) with an upper case.
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(Leave x Valand y) corresponds to a request to list all the buses leaving from Valand
(as x ) together with their departure time (as y).

Because statements are propositions, it is only natural to use proof-search as a
means to represent possible moves in dialogue seen as a game (Larsson, 2002).

2.3. Linear logic as a Dialogue Management Framework

Typically, and in particular in the archetypal logic programming language pro-
log (Bratko, 2001), axioms and rules are expressed within the general framework of
first-order logic. However, several authors (Dixon et al., 2009; Martens, 2015) have
proposed to use linear logic (Girard, 1995) instead. For our purpose, the crucial fea-
ture of linear logic is that hypotheses may be used only once. For example, one could
have a rule IsAt x Valand y(IsAt x CentralStationen (y +45 minutes). Conse-
quently, after firing the above rule, the premiss (Is x Valand y) becomes unavailable
for any other rule. Thereby the linear arrow ( can be used to conveniently model that
a bus cannot be at two places simultaneously. 3

In general, the linear arrow corresponds to destructive state updates. Thus, the
hypotheses available for proof search correspond to the state of the system. In our
application they will correspond to the information state of the dialogue participant. 4

This way, firing a linear rule corresponds to triggering an action of an agent, and
a complete proof corresponds to a scenario, i.e. a sequence of actions, possibly in-
volving action from several agents. Hence, the actions realised as actual interactions
constitute the observable dialogue. That is, an action can result in sending a message
to the outside world (in the form of speech, movement, etc.). Conversely, events hap-
pening in the outside world can result in updates of the information state (through a
model of the perceptory subsystem).

At any point in the scenario, the multiset of available linear hypotheses repre-
sents the current information-state of the agent which is modelled. To clarify, the
information-state (typically in the literature and in this paper as well), corresponds to
the state of a single agent. Thus, a scenario is conceived as a sequence of actions and
updates of the information state of a single agent a, even though such actions can be
attributed to any other dialogue participant b. (That is, they are a’s representation of
actions of b.)

3. If several arrows are present in a rule (such as A(B(C ) then both A and B are consumed
and C is produced.
4. We note, that in linear logic, facts (or hypotheses) do not come in a hierarchy. Either we have
a fact, or we don’t. However, in second-order variants of intuitionistic logic, like the one we
use, one can conveniently wrap propositions in constructors, to indicate that they come with a
qualification. For example, we can write Unsure P to indicate that the proposition P may hold
(for example if clarification is required).
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To reiterate, in our implementation, the information-state can be queried using
rules (such as those we list below). Because they are linear, these hypotheses can also
be removed from the state, as we discuss in detail in section 4.

It is important to note that we will not forego the unrestricted (i.e. non-linear) im-
plication (→). Rather, both implications will co-exist in our implementation, thus
we can represent simultaneously transient facts, or states (introduced by the lin-
ear arrow) and immutable facts (introduced by the unrestricted arrow). Besides,
we have a fixed set of rules (they remain available even after being used), such as
(IsAt x Valand y ( IsAt x CentralStationen (y + 45 minutes)) above. Each
such rule manipulates a part of the information state (captured by its premisses) and
leaves everything else in the state unchanged.

3. Questions and clarifications

3.1. Question-answering with metavariables

In this subsection we show how a metavariable can represent what is being asked,
as the unknown in a proposition. A first use for metavariables is to represent the
requested answer of a question.

In this paper, we represent a question by a predicate P over a type A. That is,
using a typed intuitionistic logic:

A : Type P : A→ Prop

The intent of the question is to find out about a value x of type A which makes
P x true, or at least entertained by the other participant. We provide several examples
in Table 1. It is worth stressing that the type A can be large (for example asking for
any location) or as small as a boolean (if one requires a simple yes/no answer). We
note in passing that, typically, polar questions can be answered not just by a boolean
but by qualifing the predicate in question, for example “maybe”, “on Tuesdays”, etc.
(Table 1, last two rows). In this instance A = Prop → Prop.

One complication are polar questions phrased in the negative (Cooper and
Ginzburg, 2012); for example: “Doesn’t John like bananas?”. In this instance, a sim-
ple “no” answer can be ambiguous, and a possible model would be a multi-valued
kind of answer (“yes he does” represented as DefiniteYes; “no he doesn’t”, rep-
resented as DefiniteNo, “no” as AmbiguousNo, and “He does in the weekend” as
Qualifier OnWeekend ):

Q Multi (λx .case x of AmbiguousNo → Trivial
DefiniteNo → ¬ (Like John Bananas)
DefiniteYes → Like John Bananas
Qualifier m → m (Like John Bananas))

To represent ambiguity in the case of AmbiguousNo, we make the answer provide
no information, in the form of a trivial proposition (which is always true regardless
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of context). This is a natural account, because the meaning of short answers (such as
“no”) always depends on the context. (“Paris” does not mean the same thing in the
context of “Where do you live?” as in the context “Where were you born?”.) Addi-
tionally, in the framework of a full dialogue management system, the AmbiguousNo
case should be treated as unresolving (the question effectively remains unanswered).
However, in such a framework, it is always possible to receive a biasing answer (“I
don’t know”) or no answer whatsoever. Even more complications are possible, by
introduction of cases such as rhetorical questions. We deem such complications out
of the scope of the current paper.

Within the state of the agent, if the value of the requested answer is represented
as a metavariable x , then the question can be represented as: Q A x (P x ). That
is, the pending question (Q denotes a question constructor) is a triple of a type, a
metavariable x , and a proposition where x occurs. We stress that P x is not part of
the information state of the agent yet, rather the fact that the above question is under
discussion is a fact. For example, after asking “Where does John live?”, we have:

haveQud : QUD (Q Location x (Live John x ))

Resolving a question can be done by communicating an answer. An answer to
a question (A : Type; P : A → Prop) can be of either of the two following forms:
i) A ShortAnswer is a pair of an element X : A and its type A, represented as
ShortAnswer A X or ii) An Assertion is a proposition R : Prop, represented as
Assert R. Therefore, one way to process a short answer is by the processShort rule:

processShort : (a : Type)→ (x : a)→ (p : Prop)→
ShortAnswer a x ( QUD (Q a x p) ( p

Above we use Π type binders to declare (meta)variables (written here (a : Type) →,
(x : a)→, etc.). This terminology will make sense to readers familiar with dependent
types. For the others, such binders can be thought as universal quantification (∀a,∀x ,
etc.), the difference is that the type of the bound variable is specified. (The reader
worried about any theoretical difficulty regarding mixing linear and dependent types
is directed to Atkey (2018) and Abel and Bernardy (2020).)

We demand in particular that types in the answer and in the question match (a
occurs in both places). Additionally, because x occurs in p, the information state
will mention the concrete x which was provided in the answer. For example, if the
QUD was (Q Location x (Live John x )) and the system processes the answer
ShortAnswer Location Paris , then x unifies with Paris , and the new state will
include Live John Paris .

To process assertions, we can use the following rule:

processAssert : (a : Type)→ (x : a)→ (p : Prop)→
Assert p ( QUD (Q a x p) ( p

That is, if (1) p was asserted, and (2) the proposition q is part of a question under
discussion, and (3) p can be unified with q (we ensure this unification by simply using
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the same metavariable p in both roles in the above rule), then the assertion resolves
the question. Additionally, the metavariable x is made ground to a value provided by
p, by virtue of unification of p and q . For example, “John lives in Paris” answers
both questions “Where does John live?” and “Does John live in Paris?” (there is
unification), but, not, for example “What time is it?” (there is no unification). Note
that, in both cases (processAssert and processShort), the information state is updated
with the proposition posed in the question.

3.2. Notion of unique and concrete values

However, one should consider the question resolved only if the answer is “unique”.
For example, the assertion “John lives somewhere” generally does not resolve the
question “Where does John live?”. That is, if “somewhere” is represented by a
metavariable, then the answer is not resolving.

Assume a two-place predicate Eat with agent as first argument and object as
second argument. The phrase “John eats Mars” could then be represented as
(Eat John Mars). According to our theory, one can then represent the phrase “John
eats” as (Eat John x ), with x being a metavariable. Assume now a system with the
following state:

Eat John Mars

Then the question “What does John eat?, represented as (Q Food x (Eat John x )),
can be answered. From the point of view of modelling with linear logic, we could
attempt to model the answering by the rule as follows:

(a : Type)→ (x : a)→ (p : Prop)→
QUD (Q a x p)→ p ( (p ⊗Answer x (Q a x p))

Note: taking a linear argument and producing it again is a common pattern, which can
be spelled out A ( (A⊗ P). It is so common that from here on we use the syntactic
sugar A _ P for it, so the above rule will be written:

(a : Type)→ (x : a)→ (p : Prop)→
QUD (Q a x p)→ p _ Answer x (Q a x p)

The above states that if x makes the proposition p true (more precisely, provable —
we require that p is a fact in the last argument) then it is valid to answer x if Q a x p
is under discussion. However, there is an issue with the above rule: there are several
values making p true, i.e. if x is not unique, then intuitively one would not consider x
a suitable answer. Indeed, assume instead that the system is in the state:

Eat John x

Then the question cannot be answered, because x stands for some unknown thing.
The proper answer is then “I do not know”.
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Hence, we introduce another type-former (x : A) →! B . As for (x : A) → B , it
introduces the metavariable x . However, the rule fires only when x is made ground
(it is bound to a term which does not contain any metavariable) and unique by match-
ing the rule — this is what we call a unique and concrete value. That is, it won’t
match in the previous example, because the answer is not made ground (it contains
unknowns). Additionally, it won’t match if the state of the system is composed of the
two hypotheses (Eat John Mars) and (Eat John Twix ): the answer is not unique.

Thus, the rule for answering can be written like so:

produceAnswer : (a : Type)→ (x : a)→! (p : Prop)→
QUD (Q a x p)→ p _ ShortAnswer a x

For example, if we have the following state:

QUD (Q Food x (Eat John x ))
Eat John Mars

The system can unify QUD (Q Food x (Eat John x )) and QUD (Q a x p),
yielding a = Food and p = (Eat John x ). Then, we search for a proof p, and to do
this, we can unify (Eat John x ) with (Eat John Mars), giving finally the answer
x = Mars and therefore the state becomes:

Eat John Mars
ShortAnswer Food Mars

Note that the fact Eat John Mars is found both as hypothesis and a conclusion of
produceAnswer , and therefore it remains in the information state.

3.3. Clarification requests and follow-up questions

In this section we discuss an alternative kind of responding, which is to issue clar-
ification requests. To see how they can occur, consider again the question “What does
John eat?”, in the information state Eat John Mars and Eat John Twix . A proper
answer could be “Mars and Twix” or even “Mars or Twix”. However we consider here
a third possibility: instead of answering, the agent can issue a clarification request.

To illustrate, consider the question “What is being eaten?” represented as
Q x (Eat y x )), with the state

Eat John Mars
Eat Mary Mars

Then the agent can unambiguously answer “Mars”: even if we do not know who we’re
talking about, it does not matter: only Mars is being eaten. However, if the state is
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Eat John Mars
Eat Mary Twix

then, a probable answer would be a clarification request, namely “By whom?”.

To detect situations where a clarification request can be issued, we can use the
following rule (we leave unspecified the exact form of the CR abstract for now and
come back to it below in section 4):

[a : Type; x : a; p : Prop; qud :: QUD (Q x p); proof :: p ]→? CR

The conditions are similar to that of the answering rule. The principal difference is
the use of the→? operator, which takes as left operand the specification of a request
and tests whether it has a non-unique solution or cannot be made fully ground. Essen-
tially this does the opposite of the→! operator. However, because the components of
the query are indeterminate, they cannot be fixed when firing the rule, and therefore
the state update cannot depend on them. Therefore we use a record syntax to limit
their scope, ensuring that they won’t occur in the state update. Such a record can be
understood as a conjunction which additionally binds components to field names. Ad-
ditionally, note the use of the single colon (:) for metavariables and the double colon
for information-state hypotheses (::).

We can then turn our attention to the formulation of this clarification request. It is
itself a question, and has a tricky representation:

Q Person z (z = y)

That is, the question is asking about some aspect which was left implicit in the original
question (what is being eaten). In our terms, it must refer to the metavariable (y) which
the original question included. After getting an answer (say Mary), z will be bound
to a ground term, and, in turn, the fact z = y will ensure that y becomes ground.

Eat John Mars
Eat Mary Twix
ori :: QUD (Q Food x (Eat y x ))
cr :: QUD (Q Person z (z = y))
a :: ShortAnswer Person Mary

after applying processShort :

Eat John Mars
Eat Mary Twix
ori :: QUD (Q Food x (Eat y x ))
r :: Mary = y

This means the original question will, by unification, become
Q Food x (Eat Mary x ), and it can be unambiguously answered using the
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produceAnswer rule. We note that the logical form of the question (z such that
z = y) is typically realised in a complicated way. In our example, it could be “By
whom?”; echoing part of the original question and assuming cooperative communi-
cation so that the questioner properly relates the clarification request to the implicits
of the original questions. In practice, the form of clarification questions will greatly
vary depending on the context (Purver, 2004).

The above presupposes a clear-cut distinction: if an answer is unique, it is given;
otherwise a clarification request is issued. However, answers could simply be exhaus-
tive (“Mars or Twix”). If the original questioners are unhappy with the ambiguity,
they are free to issue more precise questions. In practice, one can easily imagine an
ambiguity threshold after which clarification requests are preferred. In the simplest
form, this ambiguity threshold could be expressed by the length of the answer. In our
example, if one has to list, say, 20 different kinds of food, it is easy to imagine that the
answer won’t be fully given. In fact, this question can be the topic of an experimental
study.

3.3.1. Clarification via adding extra arguments

The scope of what is subject to clarification is anything which can be represented
as an argument in a relation. For instance, consider the question “Where does John
live?” with the short answer “Paris”. The questionee may decide that there is some
ambiguity about which location one is talking about — after all there are several places
with this name. To be able to model this, the Live relation needs to be generalised to
be a 3-place predicate, where the country is specified.

However most of the time one may choose to leave this parameter implicit. This
is what is done for example when asking the above question:

Q Location x (Live John x y)

If the question can be answered without regard for the country, then the metavariable
will remain free for the duration of the dialogue. If on the other hand, answering
the question demands clarification, this can be done using the mechanisms described
above. In sum, in our model, to support clarification requests, a system must integrate
many arguments and use metavariables.

The same technique can apply to polar questions. Considering “Does John live
in Paris?”, we can assume that the question can be encoded (for simplicity) as
λx .if x then (Live John Paris y) else Not (Live John Paris y).

If the system has the following facts:

Live John Paris France
Not (Live John Paris Denmark)

then both “True” and “False” are valid answers, and a clarification requests should be
issued: Q Country z (z = y). We see again that the realisation of the clarification
request depends highly on the formulation of the question and the context. In this case
“Do you mean Paris, France?” would be suitable.
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3.3.2. Clarification via adding named contextual parameters

The above presentation (using a ternary predicate) is useful conceptually, but not
ideal in practice: in the most general case one would end up with predicates with lots
of arguments, for example country, county, district, etc.

However, there is a standard solution to the issue: because the country is function-
ally dependent on the location, these two concepts should be linked directly together
rather than involve the Live predicate. Using an intermediary entity type for locations
and binary predicates, one can represent the question “Does John live in Paris?” as
follows:

λx .if x then (Live John y → Name y Paris)
else Not (Live John y → Name y Paris)

Literally, “Does John live in a place called Paris?”. The ambiguity of the Paris name
can be represented by several locations named Paris , X and Y in our illustration: 5

Name X Paris
Name Y Paris
Live John X
Not (Live John Y )
Country France X
Not (Country France Y )

Because John lives in X but not in Y the question is ambiguous. One way to lift the
ambiguity is to raise the clarification request as above. Here it can be phrased as a
polar question 6 again:

Q Bool (λx .if x then Country France y else Not (Country France y))

3.3.3. Summary

In sum, we leverage a feature of linear-logic proof search: at any point in the sce-
nario, the context can refer to metavariables. In a dialogue application, metavariables
represent a certain amount of flexibility in the scenario: so far the scenario works for
any value which could be assigned to the metavariable. This means that at a further
point the metavariable can be instantiated to some other value.

4. KoS-inspired dialogue management with linear logic

In this section we integrate our question/answering framework within more com-
plete dialog manager (DM). We stress that this DM models the information-state of

5. The combination of negation and proof search leads to complications which are out of scope
here, for this reason we simply assume that negated predicates are available in the information-
state.
6. Here we use the simpler version of the treatment of polar questions.
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Knowledge Base
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Figure 1. Architecture of a spoken dialogue system with a dialogue manager based
on a linear logic framework.

only one participant. Regardless, this participant can record its own beliefs about the
state of other participants. Figure 1 shows how such a DM can be integrated into a
spoken dialogue system. In general, the core of DM is comprised of a set of linear-
logic rules which depend on the domain of application. However, many rules will be
domain-independent (such as generic processing of answers). We show these generic
rules first, and then illustrate them with an example application.

4.1. Domain-independent rules

4.1.1. Interface with language understanding and generation

To be useful, a DM must interact with the outside world, and this interaction cannot
be represented using logical rules, which can only manipulate data which is already
integrated in the information state. Here, we assume that the information that comes
from sources which are external to the dialogue manager is expressed in terms of
semantic interpretations of moves, and contains information about the speaker and the
addressee in a structured way. We provide 5 basic types of moves, specified with a
speaker and an addressee, as an illustration:

Greet spkr addr
CounterGreet spkr addr
Ask question spkr addr
ShortAnswer vtype v spkr addr
Assert p spkr addr

These moves can either be received as input or produced as outputs. If they
are inputs, they come from the NLU component, and they enter the context with
Heard :Move → Prop predicate. For example, if one hears a greeting, the proposition
Heard (Greet S A) is added to the information state/context, without any rule being
fired — this is what we mean by an external source.



58 TAL. Volume 61 – n°3/2020

If they are outputs, to be further used by the NLG component, some rule will
place them in Agenda . For example, to issue a countergreeting, a rule will place the
proposition Agenda (CounterGreet A S ) in the information state.

Thereby each move is accompanied by the information about who has uttered it,
and towards whom was it addressed. All the moves are recored in the Moves part of
the participant’s dialogue gameboard, as a Cons-list (stack).

Additionally, we record any move m which one has yet to actively react to, in an
hypothesis of the form Pending m . We cannot use the Moves part of the state for this
purpose, because it is meant to be static (not to be consumed). Pending thus allows
one to make the difference between a move which is fully processed and a pending
one.

4.1.2. Initial state

In general, we start with empty QUD and Agenda . A non-empty QUD can be
prepared if, in a certain domain, some open questions are assumed from the start. The
Agenda might not be empty if one wants the system to initiate the conversation. There
are also no moves: nothing has been said by either party.

_ :: QUD Nil ; _ :: Agenda Nil ; _ :: Moves Nil ;

(We often do not care about the proof object witnessing a propositions, in which case
we denote it with an underscore.)

4.1.3. Hearing

The capacity of “hearing” or, in other words, starting the processing of seman-
tic representations of utterances from the NLU component is implemented with the
following rule:

hearAndRemember :
(m : DP → DP → Move)→ (x y : DP)→ (ms : List Move)→
Heard (m x y) ( Moves ms ( HasTurn x (
[_ :: Moves (Cons (m x y) ms); _ :: Pending (m x y); _ :: HasTurn y ]

where (m x y) is a semantic representation of the utterance. Here we produce a
record, whose fields will all be added to the information state. The rule demands that
participant x has the turn and, as a result, turn was taken by his partner y . 7 The DP
type stands for dialogue participant. As a result we do several things: i) place the
move in a move list for further references (PushMove), ii) record the turn-switching
(which in a complete system may not apply to all cases — then additional hypotheses
would be added), and iii) prepare to process the move (Pending).
7. For now we have a very simple model of turn-taking, which can be improved in many ways:
certain moves may not induce turn-change, there can be more than two participants, etc.
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4.1.4. Uttering

The capacity of “uttering” represents an ability to generate information for the
NLG component. NLP component is represented by Agenda that contains a move
that is just about to be uttered.

utterAndRemember :
(m : DP → DP → Move)→ (ms : List Move)→ (x y : DP)→
Agenda (m x y) ( Moves ms ( HasTurn x (
[_ :: Utter (m x y); _ :: Moves (Cons (m x y) ms); _ :: HasTurn y ]

Here also we take care of turn-taking in the same rule. As a result, the system
consumes the Agenda and passes the move to the NLG component. The move is also
memorised in the Moves stack.

4.1.5. Basic adjacency: greeting

We can show how basic move adjacency can be defined in the example of counter-
greeting preconditioned by a greeting from the other party:

counterGreeting : (x y : DP)→ HasTurn x _ Pending (Greet y x ) (
Agenda (CounterGreet x y)

4.1.6. QUD incrementation

Another important rule accounts for pushing the content of the last move, in the
case if it is an Ask move, on top of the questions under discussion (QUD) stack.

pushQUD : (q : Question)→ (qs : List Question)→ (x y : DP)→
Pending (Ask q x y) ( QUD qs ( QUD (Cons q qs)

4.1.7. Integrating the answers

If the user asserts something that relates to the top QUD , then the QUD can be
resolved and therefore removed from the stack. The corresponding proposition p is
saved as a UserFact . 8 This rule extends the abstract rule that were introduced in
section 3.3.

processAssert : (a : Type)→ (x : a)→ (p : Prop)→ (qs : List Question)→
(dp dp1 : DP)→ Pending (Assert p dp1 dp) (
QUD (Cons (Q dp a x p) qs) ( [_ :: UserFact p; _ :: QUD qs ]

Short answers are processed in a very similar way to assertions:
8. For the current purposes we only remove the top QUD, but in a more general case we can
implement the policy that can potentially resolve any QUD from the stack.
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processShort : (a : Type)→ (x : a)→ (p : Prop)→ (qs : List Question)→
(dp dp1 : DP)→ Pending (ShortAnswer a x dp1 dp) (
QUD (Cons (Q dp a x p) qs) ( [_ :: UserFact p; _ :: QUD qs ]

4.1.8. Questions and clarifications

Just as we described in 3.2, we use uniqueness check to determine whether sys-
tem can resolve the question (produceAnswer ) or it needs to initiate a clarifying side
sequence (produceCR).

produceAnswer :
(a : Type)→ (x : a)→! (p : Prop)→ (qs : List Question)→
QUD (Cons (Q USER a x p) qs) ( p _
[_ :: Agenda (ShortAnswer a x SYSTEM USER); _ :: QUD qs;
_ :: Answered (Q USER a x p)]

produceCR :
[a : Type; x : a; p : Prop; qs : List Question;
_ :: QUD (Cons (Q USER a x p) qs); _ :: p ]→? CR

The clarifying side sequence itself (CR) is meant to be specified by a dialogue de-
veloper, possibly informed by machine-learning systems, because it is domain-specific
and the choice of the spectrum of possible options is wide. We provide an example of
a domain-specific CR in the section 4.2 below.

4.2. Example

We now show how the generic system of rules above can handle the exchange:

U: Hello!
S: Hello, U.
U: When is there a bus from Valand?
S: In 15 minutes.

Let us further assume the following system context, which contains up-to-date
public transport information in the following format:

TT Bus Time Origin Destination

This is added to the initial domain-independent context outlined above. We also as-
sume that the user has the turn at the start.

QUD Nil
Agenda Nil
HasTurn U
Moves Nil
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When the system hears the greeting it can be integrated into the state using
hearAndRemember rule, therefore system updates its state accordingly:

QUD Nil
Agenda Nil
HasTurn S
Moves [Greet U S ]

(To save space we use a list notation from now on, [A, B, C] is a shorthand for
(Cons A (Cons B (Cons C ))).) In this context the system can issue a counter-
greeting by firing the counterGreeting rule:

Agenda (CounterGreet S U )
HasTurn S
Moves [Greet U S ]

Everything which is on the agenda can be uttered using utterAndRemember rule,
given that the system has the turn. System also hands the turn over to the user. There-
fore, the state becomes (we use bracket syntax instead of Cons for readability):

HasTurn U
Moves [CounterGreet S U ,Greet U S ]

Now the system hears the question (Ask (Q U Time t0 (TT n0 t0 Valand d0 ))).
It is domain-specific, and basically requests the timetable information for the given
departure station. Again, we use hearAndRemember rule to itegrate it into state, but
also, because the move is Ask , the system sets its QUD to the question that the move
contains with the pushQUD rule.

QUD [ Q U Time t0 (TT n0 t0 Valand d0 )]
HasTurn S
Moves [ Ask (Q U Time t0 (TT n0 t0 Valand d0 )) U S ,

CounterGreet S U ,Greet U S ]

Now, depending on the state of the knowledge base, the system will have two options:
i) produce the answer straight away, or ii) integrate a clarifying side sequence.

4.2.1. Straight answer

For this case we will consider a knowledge base that includes information just
about the unique (w.r.t. the time) entry in the timetable:

TT B18 T15 Valand Johanneberg

Therefore the question can be resolved and the resolving short answer can be put on
the Agenda .

Answered (Q U Time T15 (TT B18 T15 Valand Johanneberg))
QUD Nil
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HasTurn S
Agenda (ShortAnswer Time T15 S U )
Moves [. . . ] -- same as above

4.2.2. Clarifying side sequence

In contrast, we can extend our minimal timetable example with another entry,
therefore making it non-unique, w.r.t. time.

TT B18 T15 Valand Johanneberg
TT B55 T20 Valand SciencePark

In order to make it unique we can either clarify the bus number or the destination. For
the bus number the rule for clarification can be formulated as follows:

specificCR :
(t : Time)→ (n : Bus)→ (s d : Location)→ (qs : List Question)→
CR ( QUD (Cons (Q U Time t (TT n t s d)) qs) (

[_ :: QUD (Cons (Q S Bus n (WantBus n))
(Cons (Q U Time t (TT n t s d)) qs));

_ :: Agenda (Ask (Q S Bus n (WantBus n)) S U )]

As a result of applying it, the state becomes:

Agenda (Ask (Q S Bus n0 (WantBus n0 )) S U )
QUD [Q S Bus n0 (WantBus n0 ),

Q U Time t0 (TT n0 t0 Valand d0 )]
HasTurn S
Moves [ . . . ] -- same as above

Then, the system can utter the clarification request (utterAndRemember rule):

QUD [Q S Bus n0 (WantBus n0 ),Q U Time t0 (TT n0 t0 Valand d0 )]
HasTurn S
Moves [Ask (Q S Bus n0 (WantBus n0 )) S U

Ask (Q U Time t0 (TT n0 t0 Valand d0 )) U S
CounterGreet S U ,Greet U S ]

The user can reply to this with a short answer ShortAnswer Bus B55 U S or an as-
sertion Assert (WantBus B55 ) U S , which can be integrated using processShort or
processAssert rule respectively. We show the state after processing the short answer:

QUD [Q U Time t0 (TT B55 t0 Valand d0 )]
UserFact (WantBus B55 )
HasTurn S
Moves [ShortAnswer Bus B55 U S ,

Ask (Q S Bus B55 (WantBus B55 )) S U , . . . ]
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The reader can see that the metavariable n0 from the previous state is now unified with
B55 in the QUD, therefore it now corresponds to one unique entry in the knowledge
base. Hence, the answer can be issued by the produceAnswer rule.

Answered (Q U Time T20 (TT B55 T20 Valand SciencePark))
QUD Nil
Agenda (ShortAnswer Time T20 S U )
UserFact (WantBus B55 )
HasTurn S
Moves [. . . ] -- same as above

5. Related work

The present work provides a minimal and fine-grained account for clarification
requests initiated by any conversational party, following accounts of and support-
ing a subset of cases thoroughly investigated in the CLARIE Prolog-based sys-
tem (Purver, 2006), following corpus studies by Purver (2004) and Rodríguez and
Schlangen (2004).

One of our main sources of inspiration is Ginzburg’s KoS (Ginzburg, 2012). How-
ever we recast it in the framework of proof search, and linear logic. We have argued
that this has many advantages. First, it affords the use of metavariables to represent
uncertainty, which is absent from TTR. Second, expressing updates using linear logic
rules means that only the relevant parts of the information state must be dealt with
in any given rule. Cooper’s TTR has a special “asymmetric merge” operator for this
purpose, but it is a less-studied ad-hoc addition to type-theory, though see inter alia
(Grover et al., 1994). As it stands, KoS is lacking implementations, with the exception
of the work of Maraev et al. (2018), who adapt KoS to eschew the assymetric merge
operation. An oft-touted advantage of TTR is that propositions are witnessed by proof
objects. We benefit from the same advantage: we use an intuitionistic system, and as
such every proposition in the information state is associated a witness, even if we have
not shown them for concision (they play little role in our analysis).

Larsson (2002) proposed the use of Prolog (and hence, proof search), as a dialogue
management framework. However, the lack of linear hypotheses means that destruc-
tive information-state updates are sometimes awkward to represent. Besides, he does
not consider the use of metavariables to represent uncertainty — even though Prolog
in principle has the capacity to do it.

To our knowledge Dixon et al. (2009) were the first to advocate the use of linear
logic for dialogue management and planning. Compared to the present work, they
focus primarily on the planning part of dialogue rather than question-answering. In
particular, they do not discuss the role of metavariables and clarification requests.
We additionally propose the extension of linear logic with special-purpose operators
X →! Y and X →? Y to distinguish the presence or the absence of ambiguity.
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6. Evaluation/Discussion/Future work

A kind of dialogue move often studied in parallel to clarifications are corrections.
It would be elegant if corrections could be formalised in a way similar to clarifications.
However, in our analysis, metavariables disappear once they have been grounded.
Therefore, corrections cannot involve metavariables and thus require a different treat-
ment. A solution could be to keep metavariables in terms (apply unification substitu-
tions only at the point of testing equality between such variables). We leave a detailed
study to further work.

We note that the use of (meta)variables to refer to discourse objects is a very gen-
eral device. Anything which can be subject to clarification can occur as an argument to
predicates. We already showed how “Paris” can be clarified. But we could also clarify
“Live” by making the verb be an argument to a general Apply predicate, taking say a
verb and its arguments.

Prior studies have noted the phenomenon of semantic dependency relations be-
tween questions (Wiśniewski, 2015), e.g. “Who killed Bill?” can be responded by
“Who was in town?”. The cases of dependencies covered in this study are limited
to clarification of metavariables from the original question. This is meant to serve
as a proof-of-concept rather than thorough coverage of all possible cases of question
dependence. A similar issue concern follow-up questions that are meant to clarify
the type of the metavariable, e.g. “What does John like? Do you mean foodwise?”.
Generally, further work is needed to be carried out in order to extend our system to
full-scale coverage of interrelations between QUDs.

A natural progression of this work is to allow the assignment of probabilities to
rules and to the components of the state, and to train the probabilities according to
the new observations. Our approach follows Lison (2015), which is based on prob-
abilistic rules, but in our case the structure of information state is rich and derived
from the theoretical outlook on dialogue, and dialogue management has a core set of
domain-independent rules. We can also imagine combining such ideas with proba-
bilistic meaning for sentences (Goodman and Lassiter, 2015; Bernardy et al., 2018).

An important dimension of dialogue processing that the current work does not
address is providing a detailed utterance processing of the user and word-by-word in-
cremental processing. This means we cannot deal with form-based parallelism needed
for various types of acknowledgements, CRs, and self-repair. Nor, as things stand, do
we engage in grounding interaction, modelled extensively by Larsson (2002).

Table 2 originates from Ginzburg and Fernández (2010), who proposed a series of
benchmarks for comparing different approaches to developing dialogue systems (see
section 2 of that paper). For each approach the symbol X indicates that the current
approach safisfies the benchmark in the corresponding row; ∼ that the benchmark
could be met with some caveats, as explained in the text above for most cases; and —
that the benchmark is not met by a standard version of the current approach.
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Benchmark Example

qu
er

y
an

d
as

se
rt

io
n

Q1 simple answers ∼ A: Who slept? B: Bo/Not Bo
Q2a non-resolving answers X A: Who slept? B: A student.
Q2b follow up queries X B: A student. A: Who?
Q3 overinformative answers X A: Who? B: Bo on his own.
Q4 sub-questions X A: Who? B: Who was here?
Q5 topic changing —
A1 propositional content update X
A2 disagreement ∼ A: A student. B: A teacher.
SC scalability ∼
DA domain adaptability X

m
et

ac
om

m
un

ic
at

io
n

Ack1 completed acknowledgements — A: Move right. B: Mhm.
Ack2 continuation ack. — A: Move- B: mm A: -to the left.
Ack3 gestural ack. —
CR1 repetition CRs — A: Did Bo leave? B: What?
CR2 confirmation CRs — A: Bill left. B: Bill? A: Yes.
CR3 intended content CRs X A: Where is Bo? B: Which Bo?
CR4 intention recognition CRs — A: Where is the bus? B: Why?
SND distinct updates ∼
FG fine-grained representations ∼

fr
ag

m
en

ts

SF1 wide coverage of NSUs ∼
SF2 basic answer resolution ∼
SF3 reprise fragment resolution — Bo? 7→Who is Bo?
SF4 long distance short answers ∼
SF5 genre sensitive initiating NSUs ∼ (dialogue initially) The Aix bus?
D1 recognize and repair disfluencies —
D2 keep disfluencies in context —

Table 2. System evaluation. Q5—understand that irrelevant answers imply “change
the topic”, A2—disagree with user if her utterance is incompatible with own belief,
SND—an utterance can give rise to distinct updates across participants. SC—ensure
approach scales down to monologue and up to multilogue. For other, more obvious
benchmarks we refer our readers to (Ginzburg and Fernández, 2010).
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