
ConférenceTALN 1999, Carg̀ese,12-17 juill et 1999

On TAG Parsing�

Pierre Boullier

INRIA-Rocquencourt
Domaine de Voluceau

B.P. 105
78153 Le Chesnay Cedex, France

E-mail: Pierre.Boullier@inria.fr

Résuḿe

The subject of tree adjoining grammar parsing inspired many researches but they all failed
to beat theO(n6) parse time wall. Thus, some present researches in this field try to identify
efficient parser implementations either for the full grammar class, or for linguistically signif-
icant subclasses. This paper addresses both issues and proposes a method which uses range
concatenation grammars as an intermediate implementation formalism. Range concatenation
grammar is a syntactic formalism which is both powerful, in so far as it extends linear context-
free rewriting systems, and efficient, in so far as its sentences can be parsed in polynomial time.
We show two methods by which unrestricted tree adjoining grammars can be transformed into
equivalent range concatenation grammars which can be parsed inO(n6) time, and, moreover,
if the input tree adjoining grammar has some restricted form, its parse time decreases toO(n5).

1. Introduction

The subject of tree adjoining grammar (TAG) parsing, or equivalent formalisms such as
linear indexed grammar (LIG), inspired many researches but they all failed to beat theO(n6)

parse time wall.1 Thus, current researches in this field, can be divided into two parts. A first one
which tries to find parsing methods which can be efficiently implemented, and a second one,
which tries to identify linguistically significant TAG subclasses whose theoretical parse time
is smaller thanO(n6). In this paper, we try to reconcile these two approaches. To reach this
goal, we propose a method which uses range concatenation grammar (RCG) as an intermediate
implementation formalism for TAG parsing.

The notion of RCG is introduced in [Boullier, 1998a]; it is a syntactic formalism which is
a variant of the simple version of literal movement grammar, described in [Groenink, 1997],
and which is also related to the framework of LFP developed by [Rounds, 1988]. This formal-
ism extends context-free grammars (CFGs) and is even more powerful than linear context-free

�An extended version of this paper is in [Boullier, 1999a]
1Asymptotically faster methods are known, but they all possess large hidden constants. There are even some

arguments (see [Satta, 1994]) against the existence of faster algorithms with small constants.

PierreBoulli er

rewriting systems (LCFRS)2 [Vijay-Shanker, Weir, and Joshi, 1987], while staying computa-
tionally tractable: its sentences can be parsed in polynomial time. This paper will not address
the usage of RCGs as a formalism in which the syntax of natural languages (NLs) can bedirectly
defined. We will rather explore anindirectusage as an intermediate implementation formalism.
This usage of RCGs has already been studied in [Boullier, 1998a] for syntactic formalisms such
as LIGs or LCFRS. The TAG parsing case has been particularly studied in [Boullier, 1998b], but
the algorithm which transforms a TAG into an equivalent RCG is only proposed for a restricted
class of adjunction constraints, and, moreover, theO(n6) parse time is only reached when the
original TAG is in a special normal form.

This paper shows two new ways to parse TAGs with RCGs. Both methods accept unrestricted
TAGs as inputs, however, the first one directly produces an equivalent RCG which is, in turn,
transformed into another RCG, while the second one first dissects the elementary trees of the
input TAG before applying a transformation into an object RCG. Both methods produce an
equivalent RCG which can be parsed inO(n6) time. Moreover, if the initial TAG is in the
restricted form introduced in [Satta and Schuler, 1998], the corresponding RCG has anO(n5)

parse time.

2. Range Concatenation Grammars

This section introduces the notion of RCG, more details can be found in [Boullier, 1998a].

A positive range concatenation grammar(PRCG)G = (N; T; V; P; S) is a 5-tuple where
N is a finite set ofpredicate names, T andV are finite, disjoint sets ofterminal symbolsand
variable symbolsrespectively,S 2 N is thestart predicate name, andP is a finite set ofclauses

 0 ! 1 : : : m

wherem � 0 and each of 0; 1; : : : ; m is apredicateof the form

A(�1; : : : ; �i; : : : ; �p)

wherep � 1 is itsarity,A 2 N and each of�i 2 (T [V)�, 1 � i � p, is anargument.

Each occurrence of a predicate in the RHS of a clause is a predicatecall, it is a predicate
definitionif it occurs in its LHS. Clauses which define predicateA are calledA-clauses. This
definition assigns a fixed arity to each predicate name. The arity of the start predicate is one.
Thearity k of a grammar (we have ak-PRCG), is the maximum arity of its predicates.

Lower case letters such asa; b; c; : : : will denote terminal symbols, while upper case letters
such asL;R;X; Y; Z will denote elements ofV .

The language defined by a PRCG is based on the notion ofrange. For a given input string
w = a1 : : : an a range is a couple(i; j), 0 � i � j � n of integers which denotes the occurrence
of some substringai+1 : : : aj in w. The numberj � i is its size. We will use several equivalent
denotations for ranges: an explicit dotted notation likew1 � w2 � w3 or, if w2 extends from
positionsi + 1 throughj, a tuple notationhi::jiw, or hi::ji whenw is understood or of no
importance. For a rangehi::ji, i is its lower boundandj is its upper bound. If i = j, we have

2In [Boullier, 1999b], we argue that this extra power can be used in natural language processing.

On TAG Parsing

anemptyrange. Of course, only consecutive ranges can be concatenated into new ranges. In any
PRCG, terminals, variables and arguments in a clause are supposed to be bound to ranges by
a substitution mechanism. Aninstantiated clauseis a clause in which variables and arguments
are consistently (w.r.t. the concatenation operation) replaced by ranges; its components are
instantiated predicates.

For example,A(hg::hi; hi::ji; hk::li) ! B(hg+1::hi; hi+1::j-1i; hk::l-1i) is an instantiation of
the clauseA(aX; bY c; Zd) ! B(X; Y; Z) if the source texta1 : : : an is such thatag+1 =

a; ai+1 = b; aj = c andal = d. In this case, the variablesX, Y andZ are bound tohg+1::hi,
hi+1::j-1i andhk::l-1i respectively.

For a given PRCG and an input stringw, a derive relation, denoted by)
G;w

, is defined on

strings of instantiated predicates. If an instantiated predicate is the LHS of some instantiated
clause, it can be replaced by the RHS of that instantiated clause.

Thelanguageof a PRCGG = (N; T; V; P; S) is the set

L(G) = fw j S(�w�)
+
)
G;w

"g

An input stringw = a1 : : : an is a sentence iff the empty string (of instantiated predicates)
can be derived fromS(h0::ni). Note that the order of predicate calls in the RHS of a clause is
of no importance.3

The arguments of a given predicate may denote discontinuous or even overlapping ranges.
Fundamentally, a predicate nameA defines a notion (property, structure, dependency, . . .) be-
tween its arguments whose ranges can be arbitrarily scattered over the source text. PRCGs are
therefore well suited to describe long distance dependencies. Overlapping ranges arise as a con-
sequence of the non-linearity of the formalism. For example, the same variable (denoting the
same range) may occur in different arguments in the RHS of some clause, expressing different
views (properties) of the same portion of the source text. However, in this paper, we do not need
the full power of RCGs and we will restrict our attention to the simple subclass of PRCGs.

A clause issimple4 if it is

non-combinatorial: each argument of its RHS predicates consists of a single variable, and

non-erasing and linear: each of its variables appears exactly one time in its LHS and one time
in its RHS.

A simple RCG is an RCG in which all its clauses are simple.

As an example, the following simple 3-PRCG defines the three-copy languagefwww j w 2

fa; bg�g which is not a CFL and is not even a TAL.

S(XY Z) ! A(X; Y; Z)

A(aX; aY; aZ) ! A(X; Y; Z)

A(bX; bY; bZ) ! A(X; Y; Z)

A("; "; ") ! "

3In [Boullier, 1998a], we also define negative RCG (NRCG), which allows negative predicate calls. These
negative calls define the complement language w.r.t.T � of their positive counterpart. Arange concatenation
grammar(RCG) is either a PRCG or a NRCG.

4This is not Groenink’s definition of simple.

PierreBoulli er

A parsing algorithm for RCGs has been presented in [Boullier, 1998a]. For an RCGG and
an input string of lengthn, it produces a parse forest in time polynomial withn and linear with
jGj. The degree of this polynomial is at most the number of free (independent) bounds in any
clause. For a simplek-RCG, its parse time is at worstO(jGjnd) with d = maxcj2P (kj + vj),
if cj denotes thej th clause inP , kj is the arity of its LHS predicate andvj is the number of its
variables.

3. First Transformation from Unrestricted TAG to Simple PRCG

The notion of mild context-sensitivity originates in an attempt by [Joshi, 1985] to express the
formal power needed to define the syntax of NLs, and the most popular incarnation of mildly
context-sensitive formalisms is certainly the TAG formalism. A TAG is a tree rewriting system
where trees are composed by means of the operations of adjunction and substitution. Here, we
assume that the reader is familiar with TAGs (see [Joshi, 1987] for an introduction).

First, we introduce the notion of decoration strings.

The set of nodes (addresses) in a tree or in a set of trees� is denoted byN� . Let T =

(VN ; T; I;A; S) be an input TAG. Every node� 2 N� in every elementary (either initial or
auxiliary) tree� 2 I [A is decorated as follows.

� If � is an adjunction node, it is decorated by two symbols, a left decorationL� and a right
decorationR� called itsLR-variables. These symbols are RCG variables which capture
the terminal yields of the complete derived trees that can be adjoined at�. Its left (resp.
right) terminal yield, lays to the left (resp. right) of the foot node and is captured byL�

(resp.R�).

� If � is an substitution node, it is decorated by a single symbolS�, called itsS-variable.
This RCG variable captures the terminal yield of the complete derived trees that can be
substituted at�.

� If � is a terminal node, it has a single decoration which is either its terminal label or".

Afterwards, during a top-down left to right traversal of� , we collect into adecoration string
�� the previous annotations. For an adjunction node, itsL-variable is collected during its top-
down traversal while itsR-variable is collected during the bottom-up traversal.S-variables
and terminal decorations, associated with leaves, are gathered during the traversal of these leaf
nodes. If� is an auxiliary tree, itsleft decoration string�l� and itsright decoration string�r�
are the parts of�� gathered during the previous traversal, respectively before and after the foot
node of� (i.e. we have�l� = Lr� : : : Lf� and�r� = Rf� : : : Rr� if r� andf� are the root and foot
nodes of�).

Now, we are ready to describe the TAG to simple PRCG transformation algorithm.

We will generate a simple PRCGG = (N; T; V; P; S) which is equivalent to an initial TAG
T = (VN ; T; I;A; S). We assume that the setN of its predicate names and the setV of its
variables are implicitly defined by the clauses inP .

In a first phase, for each initialS-tree�, we initializeP with

S(X) ! �(X)

On TAG Parsing

Let � be an elementary tree and let�� be its decoration string. Of course, if� is an auxiliary
tree,�� is cut into its left and right part:�� = �l��

r
� . To each such� , we associate a simple

clause, constructed as follows:

� its LHS is the predicate definition�(��), if � is the initial tree�;

� its LHS is the predicate definition�(�l� ; �
r
�), if � is the auxiliary tree�;

� its RHS is 1 : : : i : : : m, 1 � i � m;m = jN� j with

– i = [adj(�i)](L�i ; R�i), if �i is an adjunction node inN� ,

– i = [sbst(�i)](S�i), if �i is a substitution node inN� , and

– i = ", if �i is a terminal node inN� .

The denotations[adj(�i)] and [sbst(�i)] are predicate names which respectively symbolize
the adjunction or substitution operations that can be performed at node�i.

For each nonterminal node� 2 NI[A, we define these predicates by the following clauses.

� If � is an adjunction node, and ifadj is the adjunction constraint function, whose value is
the set of auxiliary trees that can be adjoined at� (we writenil 2 adj(�), for an optional
adjunction), then, for every� 2 adj(�) we produce the clause

[adj(�)](L;R) ! �(L;R)

if � 2 A or
[adj(�)]("; ") ! "

if � = nil.

� If � is a substitution node, and ifsbst is the substitution constraint function, whose value
is the set of initial trees that can be substituted at� (we writenil 2 sbst(�), for an optional
substitution), then, for every� 2 sbst(�) we produce the clause

[sbst(�)](S) ! �(S)

if � 2 I or
[sbst(�)](") ! "

if � = nil.

Since these clauses are all simple and positive, and since predicates are all at most binaries,
G is a simple 2-PRCG.5

Let us now examine the complexity of the parsing algorithm forG. Applying to our simple
2-PRCG the general result on parsing with simplek-RCG, we get anO(nv+2) parse time.
Expressed in terms of the original TAG, and since there are twoLR-variables per adjunction

5In this paper, we will not address the correctness of the previous algorithm and we assume that it generates a
PRCG which is equivalent to the original TAG.

PierreBoulli er

node, in the worst case, we have anO(n2p+2) parse time for unrestricted TAGs, ifp is the
maximum number of adjunction nodes in an elementary tree.

The idea is now to see whetherG can be transformed into an equivalent RCGG0 with a
better parse time, and in particular whether we can reached the classicalO(n6) bound. The
purpose of what follows is to transform each previously generated clause into a sequence of
equivalent clauses in such a way that the number of their variables (and thus the number of their
free bounds) is as small as possible.

If we consider the decoration string�� associated with any elementary tree� , it is not difficult
to figure out that�� is a well parenthesized (Dyck) string where, on the one hand, the couples
of parentheses are theL andR-variables associated with its adjunction nodes, and, on the other
hand, the basic vocabulary is formed both byT , the set of terminal symbols, and by the set of
its S-variables.

Fundamentally, a Dyck language is recursively defined from initial strings in its basic vo-
cabulary either by concatenation of two Dyck languages or by wrapping a Dyck language into
a couple of parentheses. Conversely, each Dyck string can be recursively and unambiguously
decomposed (parsed) either into concatenation of two Dyck strings or into a wrapped Dyck
string. In our case, at each step of such decomposition of a Dyck (decoration) string�, we can
associate an RCG clause which exhibits, either its cutting into a wrapped prefix part�1 and a
suffix part�2, or its unwrapping. However, this process is slightly complicated by the fact that
�, in the auxiliary tree case, is itself decomposed into two arguments, a left argument�l and
a right argument�r. In [Boullier, 1999a], we show that this decomposition produces, for each
original clause, a sequence of equivalent clauses6 which, in the worst case, define binary predi-
cates with four variables.7 Therefore, we have a method which parses the language defined by
an unrestricted TAG in worst case timeO(n6).

4. Second Transformation from Unrestricted TAG to Simple PRCG

The idea of this second algorithm is to dissect the elementary trees of a TAG in such a way
that each excised subtree directly generates at worst anO(n6) time parsable clause.

The same symbol� or � will be used to denote both any elementary tree and the root node
of that elementary tree. If� is not a leaf node in some elementary tree, itsith daughter, from left
to right, is denoted�:i. A node on a spine is termed asspinalnode. If the root of a (sub)tree is a
spinal node, we have aspinaltree. Thus, a spinal tree is a subtree of an auxiliary tree rooted on

its spine. A tree rooted at node� is denoted either by
�
�
/.

if it is a spinal tree or by
�
�
M

if it is a non

spinal tree.8 The over hanging circle depicts its root node while the underlying triangles depict
its subtrees. For a given node�, we define afull opentree as the list of its daughter trees. This
full open tree is noted�

/.
or �

M

according as� is a spinal or a non spinal node. Anopentree is

a list of consecutive daughter treesf�:i; �:i+1; : : : ; �:jg. In the sequel we will handle two kinds
of open trees�

/i
and�

i.
where�

/i
denotes the left daughters whose rank is less or equal thani and

�
i.

denotes the right daughters whose rank is greater or equal thani. By contrast with the term

open, a “normal” tree will be sometimes called aclosetree.

6Their number is linear in the number of adjunction nodes in the original elementary tree.
7This most costly case corresponds to an adjunction at a spinal node.
8Note that the� initial trees are also denoted by

�

�
M

, and the� auxiliary trees by
�

�
/.

.

On TAG Parsing

For a given TAGT = (VN ; T; I;A; S), we will build an equivalent simple 2-PRCGG =

(N; T; V; P; S). Except forS, the predicates names ofN are the previously defined tree denota-
tions. Thespinal treepredicates are binary while thenon spinal treepredicates are unary. The
set of clausesP is built, following the transformation rules listed below, each clause introduces
its own variables.

In a first phase, for each initialS-tree�, we initializeP with

S(X) !
�
�
M

(X) (1)

Afterwards, the elementary trees ofI [A are processed in turn. Each elementary tree is
cut into smaller pieces, starting from the root. Intuitively, at each step, a (sub)tree is cut into
two parts, its root and its full open tree. The type of processing for the root node depends
whether adjunctions are allowed or not. While the processing of a full open tree consists of
a partitioning into its constituent parts which are either (smaller) open trees or close trees. Of
course, this processing differs whether spinal or non spinal open trees are considered. We iterate
until the leaves are reached. If we reach a substitution node, we apply the possible substitutions.

We first consider the transformation of non spinal close trees rooted at node�.

If
�
�
M

is a non trivial tree, we have

�

X

=)

8>><
>>:

� 2 adj(�);
�
�
M

(L X R) !
�

�
/.
(L;R) �

1.
(X) (a)

nil 2 adj(�);
�
�
M

(X) ! �
1.
(X) (b)

(2)

If
�
�
M

is a leaf tree, depending of its label, we have

for an empty leaf (i.e." = lab(�))

� "

=)
�
�
M

(") ! " (3)

for a terminal leafa (i.e. a = lab(�); a 2 T)

� a

=)
�
�
M

(a) ! " (4)

for a substitution node (i.e.A = lab(�); A 2 VN)

� A

=)

8>><
>>:

� 2 sbst(�);
�
�
M

(X) !
�
�
M

(X) (a)

nil 2 sbst(�);
�
�
M

(") ! " (b)

(5)

PierreBoulli er

Now, we consider the transformation of non spinal open trees rooted at�. The components
of such trees are processed from left to right in the case�

i.
or from right to left in the case�

/i
.

For an open tree of the form�
i.

, we know that the left daughters of� whose rank is less thani

must not be considered, thus such an open tree is processed by extracting itsith daughter close
tree and by iteratively processing�

i+1.
, until completion. Of course, this completion is reached

when, after the extraction of theith daughter, the resulting open tree is empty.

�:i

X

Y =)

8>><
>>:

Y 6= ;; �
i.
(X Y) !

�

�:i
M

(X) �
i+1.

(Y) (a)

Y = ;; �
i.
(X) !

�

�:i
M

(X) (b)

(6)

For a right to left processing, we have

Y
�:i

X

=)

8>><
>>:

i > 1; �
/i
(Y X) ! �

/i-1
(Y)

�

�:i
M

(X) (a)

i = 1; �
/1
(X) !

�

�:1
M

(X) (b)

(7)

Now, we consider the transformation of spinal trees rooted at�.

For each spinal close tree such as
�
�
/.

, we must handle both a possible set of adjunctions at�,

and the processing of the full spinal open subtree�
/.

. Thus, we have the transformation rule

�

X Y

=)

8>><
>>:

� 2 adj(�);
�
�
/.
(LX; Y R) !

�

�
/.
(L;R) �

/.
(X; Y) (a)

nil 2 adj(�);
�
�
/.
(X; Y) ! �

/.
(X; Y) (b)

(8)

For each spinal open tree�
/.

, we have, if�:i is the spinal daughter node

L
�:i

X Y

R =) �
/.
(LX; Y R) ! �

/i-1
(L)

�

�:i
/.

(X; Y) �
i+1.

(R)

In that case, the number of free bounds in the corresponding clause is six. We can remark
that, on the one hand, the left and right open trees�

/i-1
and �

i+1.
are independent and may thus

be computed one after the other and, on the other hand, that any of them, or both, can be
empty. Thus, equivalently, if�r denotes an intermediate predicate name, we have the following
transformation rules

On TAG Parsing

L
�:i

X Y

R =)

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

L 6= ;; R 6= ;;

8>><
>>:

�
/.
(LX; Y) ! �

/i-1
(L) �r(X; Y) (a)

�r(X; Y R) !
�

�:i
/.

(X; Y) �
i+1.

(R) (b)

L = ;; R 6= ;; �
/.
(X; Y R) !

�

�:i
/.

(X; Y) �
i+1.

(R) (c)

L 6= ;; R = ;; �
/.
(LX; Y) ! �

/i-1
(L)

�

�:i
/.

(X; Y) (d)

L = ;; R = ;; �
/.
(X; Y) !

�

�:i
/.

(X; Y) (e)

(9)

where the number of free bounds is now less or equal to five.

And last, for a foot node�, we have

�

=)

8>><
>>:

� 2 adj(�);
�
�
/.
(L;R) !

�

�
/.
(L;R) (a)

nil 2 adj(�);
�
�
/.
("; ") ! " (b)

(10)

By inspection of the generated clauses, we can verify that we have a simple 2-PRCG. The
degree of the polynomial time complexity of this grammar is the maximum number of free
bounds in each clause. We see that the maximum number of free bounds is six and is only
reached one time in the clause resulting of transformation (8a). Transformations (9a–d) cost
five (recall that they all arise as an optimization of a six free bound clause), while all the others
contribute to a number less or equal to four. This transformation explicitly ranks by cost the
operations used in TAG parsing. In particular, we confirm that the most costly operation is an
adjunction at a spinal node.9

We have shown that each TAG can be translated into an equivalent simple 2-PRCG which
can be parsed, at worst, inO(n6) time.

To account for the dependency from the input grammar size, we definejT j =
P

�2NI[A
(1 +

jadj(�)j+ jsbst(�)j). We can easily see that the number of generated clauses is proportional to
jT j. Since the parse time of an RCG is linear in the size of its input grammar, we finally get an
O(jT j n6) parse time forG.

5. Conclusion

In this paper, we proposed two methods to implement a TAG parser inO(n6) time. These
algorithms both use RCGs, a powerful high level syntactic description formalism, as an interme-
diate object language. Since [Boullier, 1998b], we know that RCGs can be used to implement
parsers for TAGs. However, theO(n6) bound was only reached with a restricted form of adjunc-
tion constraints and when the initial TAG was in some normal form. In particular, this normal
form assumes that elementary trees are in a binary branching form, form in which the original
structure has disappeared. At the contrary, the algorithms presented here, work for completely
unrestricted TAGs though their corresponding parsers still work inO(n6) time at worst.

9As for the first algorithm, we leave aside the proof of the correctness of the above algorithm.

PierreBoulli er

In [Satta and Schuler, 1998], the authors introduced a linguistically significant restricted form
of TAGs that can be parsed inO(n5), in [Boullier, 1999a], we have shown that their subclass
can be transformed into an equivalent RCG that can also be parsed inO(n5) time, whether we
start from their inference rules, or directly from the elementary trees representation.

The usage of RCGs as an intermediate structure may result in several advantages. First, since
the RCG formalism is simple, the transformations proposed in this paper give another view of
the (rather complicated) adjunction mechanism and may help to understand when and why it
is costly to implement. Second, since RCGs can be efficiently implemented, we are convinced
that these methods are good candidates for practical TAG implementations.

Références

[Boullier, 1998a] Boullier P. (1998). Proposal for a Natural Language Processing Syntactic Back-
bone. InResearch Report No 3342at http://www.inria.fr/RRRT/RR-3342.html , INRIA-
Rocquencourt, France, Jan. 1998, 41 pages.

[Boullier, 1998b] Boullier P. (1998). A Generalization of Mildly Context-Sensitive Formalisms. InPro-
ceedings of the Fourth International Workshop on Tree Adjoining Grammars and Related Frameworks
(TAG+4), University of Pennsylvania, Philadelphia, PA, 1–3 August, pages 17–20.

[Boullier, 1999a] Boullier P. (1999). On TAG and Multicomponent TAG parsing. InResearch Report
No 3668at http://www.inria.fr/RRRT/RR-3668.html , INRIA-Rocquencourt, France, Apr.
1999, 39 pages.

[Boullier, 1999b] Boullier P. (1999). Chinese Numbers, MIX, Scrambling, and Range Concatenation
Grammars InProceedings of the 9th Conference of the Europwean Chapter of the Association for
Computational Linguistics (EACL’99), Bergen, Norway, June 8–12.

[Groenink, 1997] Groenink A. (1997). SURFACE WITHOUT STRUCTURE Word order and tractability
issues in natural language analysis. PhD thesis, Utrecht University, The Netherlands, Nov. 1977, 250
pages.

[Joshi, 1985] Joshi A. (1985). How much context-sensitivity is necessary for characterizing structural
descriptions — Tree Adjoining Grammars. InNatural Language Processing — Theoritical, Compu-
tational and Psychological Perspective, D. Dowty, L. Karttunen, and A. Zwicky, editors, Cambridge
University Press, New-York, NY.

[Joshi, 1987] Joshi A. (1987). An Introduction to Tree Adjoining Grammars. InMathematics of Lan-
guage, Manaster-Ramer, A., editors, John Benjamins, Amsterdam, pages 87–114.

[Rounds, 1988] Rounds W. (1988). LFP: A Logic for Linguistic Descriptions and an Analysis of its
Complexity. InACL Computational Linguistics, Vol. 14, No. 4, pages 1–9.

[Satta, 1994] Satta G. (1994). Tree adjoining grammars parsing and boolean matrix multiplication. In
Computational Linguistics, 20(2), pages 173–192.

[Satta and Schuler, 1998] Satta G. and Schuler W. (1998). Restrictions on Tree Adjoining Languages. In
Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th In-
ternational Conference on Computational Linguistics (COLING-ACL’98), Université de Montréal, Mon-
tréal, Québec, Canada, 10–14 August, vol. II, pages 1176–1182.

[Vijay-Shanker, Weir, and Joshi, 1987] Vijay-Shanker K., Weir D. and Joshi A. (1987). Characterizing
Structural Descriptions Produced by Various Grammatical Formalisms. InProceedings of the 25th Meet-
ing of the Association for Computational Linguistics (ACL’87), Stanford University, CA, pages 104–111.

